Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaofei He is active.

Publication


Featured researches published by Xiaofei He.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2005

Face recognition using Laplacianfaces

Xiaofei He; Shuicheng Yan; Yuxiao Hu; Partha Niyogi; Hong-Jiang Zhang

We propose an appearance-based face recognition method called the Laplacianface approach. By using locality preserving projections (LPP), the face images are mapped into a face subspace for analysis. Different from principal component analysis (PCA) and linear discriminant analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition.


international conference on computer vision | 2005

Neighborhood preserving embedding

Xiaofei He; Deng Cai; Shuicheng Yan; Hong-Jiang Zhang

Recently there has been a lot of interest in geometrically motivated approaches to data analysis in high dimensional spaces. We consider the case where data is drawn from sampling a probability distribution that has support on or near a submanifold of Euclidean space. In this paper, we propose a novel subspace learning algorithm called neighborhood preserving embedding (NPE). Different from principal component analysis (PCA) which aims at preserving the global Euclidean structure, NPE aims at preserving the local neighborhood structure on the data manifold. Therefore, NPE is less sensitive to outliers than PCA. Also, comparing to the recently proposed manifold learning algorithms such as Isomap and locally linear embedding, NPE is defined everywhere, rather than only on the training data points. Furthermore, NPE may be conducted in the original space or in the reproducing kernel Hilbert space into which data points are mapped. This gives rise to kernel NPE. Several experiments on face database demonstrate the effectiveness of our algorithm


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011

Graph Regularized Nonnegative Matrix Factorization for Data Representation

Deng Cai; Xiaofei He; Jiawei Han; Thomas S. Huang

Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human brain. On the other hand, from the geometric perspective, the data is usually sampled from a low-dimensional manifold embedded in a high-dimensional ambient space. One then hopes to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In this paper, we propose a novel algorithm, called Graph Regularized Nonnegative Matrix Factorization (GNMF), for this purpose. In GNMF, an affinity graph is constructed to encode the geometrical information and we seek a matrix factorization, which respects the graph structure. Our empirical study shows encouraging results of the proposed algorithm in comparison to the state-of-the-art algorithms on real-world problems.


IEEE Transactions on Image Processing | 2006

Orthogonal Laplacianfaces for Face Recognition

Deng Cai; Xiaofei He; Jiawei Han; Hong-Jiang Zhang

Following the intuition that the naturally occurring face data may be generated by sampling a probability distribution that has support on or near a submanifold of ambient space, we propose an appearance-based face recognition method, called orthogonal Laplacianface. Our algorithm is based on the locality preserving projection (LPP) algorithm, which aims at finding a linear approximation to the eigenfunctions of the Laplace Beltrami operator on the face manifold. However, LPP is nonorthogonal, and this makes it difficult to reconstruct the data. The orthogonal locality preserving projection (OLPP) method produces orthogonal basis functions and can have more locality preserving power than LPP. Since the locality preserving power is potentially related to the discriminating power, the OLPP is expected to have more discriminating power than LPP. Experimental results on three face databases demonstrate the effectiveness of our proposed algorithm


international conference on computer vision | 2007

Semi-supervised Discriminant Analysis

Deng Cai; Xiaofei He; Jiawei Han

Linear Discriminant Analysis (LDA) has been a popular method for extracting features which preserve class separability. The projection vectors are commonly obtained by maximizing the between class covariance and simultaneously minimizing the within class covariance. In practice, when there is no sufficient training samples, the covariance matrix of each class may not be accurately estimated. In this paper, we propose a novel method, called Semi- supervised Discriminant Analysis (SDA), which makes use of both labeled and unlabeled samples. The labeled data points are used to maximize the separability between different classes and the unlabeled data points are used to estimate the intrinsic geometric structure of the data. Specifically, we aim to learn a discriminant function which is as smooth as possible on the data manifold. Experimental results on single training image face recognition and relevance feedback image retrieval demonstrate the effectiveness of our algorithm.


IEEE Transactions on Knowledge and Data Engineering | 2005

Document clustering using locality preserving indexing

Deng Cai; Xiaofei He; Jiawei Han

We propose a novel document clustering method which aims to cluster the documents into different semantic classes. The document space is generally of high dimensionality and clustering in such a high dimensional space is often infeasible due to the curse of dimensionality. By using locality preserving indexing (LPI), the documents can be projected into a lower-dimensional semantic space in which the documents related to the same semantics are close to each other. Different from previous document clustering methods based on latent semantic indexing (LSI) or nonnegative matrix factorization (NMF), our method tries to discover both the geometric and discriminating structures of the document space. Theoretical analysis of our method shows that LPI is an unsupervised approximation of the supervised linear discriminant analysis (LDA) method, which gives the intuitive motivation of our method. Extensive experimental evaluations are performed on the Reuters-21578 and TDT2 data sets.


knowledge discovery and data mining | 2010

Unsupervised feature selection for multi-cluster data

Deng Cai; Chiyuan Zhang; Xiaofei He

In many data analysis tasks, one is often confronted with very high dimensional data. Feature selection techniques are designed to find the relevant feature subset of the original features which can facilitate clustering, classification and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenario, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. Traditional unsupervised feature selection methods address this issue by selecting the top ranked features based on certain scores computed independently for each feature. These approaches neglect the possible correlation between different features and thus can not produce an optimal feature subset. Inspired from the recent developments on manifold learning and L1-regularized models for subset selection, we propose in this paper a new approach, called Multi-Cluster Feature Selection (MCFS), for unsupervised feature selection. Specifically, we select those features such that the multi-cluster structure of the data can be best preserved. The corresponding optimization problem can be efficiently solved since it only involves a sparse eigen-problem and a L1-regularized least squares problem. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithm.


IEEE Transactions on Knowledge and Data Engineering | 2008

SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis

Deng Cai; Xiaofei He; Jiawei Han

Linear Discriminant Analysis (LDA) has been a popular method for extracting features that preserves class separability. The projection functions of LDA are commonly obtained by maximizing the between-class covariance and simultaneously minimizing the within-class covariance. It has been widely used in many fields of information processing, such as machine learning, data mining, information retrieval, and pattern recognition. However, the computation of LDA involves dense matrices eigendecomposition, which can be computationally expensive in both time and memory. Specifically, LDA has O(mnt + t3) time complexity and requires O(mn + mt + nt) memory, where m is the number of samples, n is the number of features, and t = min(m,n). When both m and n are large, it is infeasible to apply LDA. In this paper, we propose a novel algorithm for discriminant analysis, called Spectral Regression Discriminant Analysis (SRDA). By using spectral graph analysis, SRDA casts discriminant analysis into a regression framework that facilitates both efficient computation and the use of regularization techniques. Specifically, SRDA only needs to solve a set of regularized least squares problems, and there is no eigenvector computation involved, which is a huge save of both time and memory. Our theoretical analysis shows that SRDA can be computed with O(mn) time and O(ms) memory, where .s(les n) is the average number of nonzero features in each sample. Extensive experimental results on four real-world data sets demonstrate the effectiveness and efficiency of our algorithm.


international conference on computer vision | 2007

Spectral Regression for Efficient Regularized Subspace Learning

Deng Cai; Xiaofei He; Jiawei Han

Subspace learning based face recognition methods have attracted considerable interests in recent years, including principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projection (LPP), neighborhood preserving embedding (NPE) and marginal Fisher analysis (MFA). However, a disadvantage of all these approaches is that their computations involve eigen- decomposition of dense matrices which is expensive in both time and memory. In this paper, we propose a novel dimensionality reduction framework, called spectral regression (SR), for efficient regularized subspace learning. SR casts the problem of learning the projective functions into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with the regression based framework, different kinds of regularizes can be naturally incorporated into our algorithm which makes it more flexible. Computational analysis shows that SR has only linear-time complexity which is a huge speed up comparing to the cubic-time complexity of the ordinary approaches. Experimental results on face recognition demonstrate the effectiveness and efficiency of our method.


computer vision and pattern recognition | 2007

Learning a Spatially Smooth Subspace for Face Recognition

Deng Cai; Xiaofei He; Yuxiao Hu; Jiawei Han; Thomas S. Huang

Subspace learning based face recognition methods have attracted considerable interests in recently years, including principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projection (LPP), neighborhood preserving embedding (NPE), marginal fisher analysis (MFA) and local discriminant embedding (LDE). These methods consider an n1timesn2 image as a vector in Rn 1 timesn 2 and the pixels of each image are considered as independent. While an image represented in the plane is intrinsically a matrix. The pixels spatially close to each other may be correlated. Even though we have n1xn2 pixels per image, this spatial correlation suggests the real number of freedom is far less. In this paper, we introduce a regularized subspace learning model using a Laplacian penalty to constrain the coefficients to be spatially smooth. All these existing subspace learning algorithms can fit into this model and produce a spatially smooth subspace which is better for image representation than their original version. Recognition, clustering and retrieval can be then performed in the image subspace. Experimental results on face recognition demonstrate the effectiveness of our method.

Collaboration


Dive into the Xiaofei He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao Hu

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge