Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaogang Gu is active.

Publication


Featured researches published by Xiaogang Gu.


Journal of Hazardous Materials | 2015

Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

Xiang Zhang; Xiaogang Gu; Shuguang Lu; Zhouwei Miao; Minhui Xu; Xiaori Fu; Zhaofu Qiu; Qian Sui

The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites.


Chemosphere | 2015

Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism

Zhouwei Miao; Xiaogang Gu; Shuguang Lu; Xuke Zang; Xiaoliang Wu; Minhui Xu; Landry Biyoghe Bi Ndong; Zhaofu Qiu; Qian Sui; George Yuzhu Fu

The performance of Fe(2+)-catalyzed sodium percarbonate (SPC) stimulating the oxidation of perchloroethylene (PCE) in groundwater remediation was investigated. The experimental results showed that PCE could be completely oxidized in 5 min at 20 °C with a Fe(2+)/SPC/PCE molar ratio of 8/8/1, indicating the effectiveness of Fe(2+)-catalyzed SPC oxidation for PCE degradation. Fe(2+)-catalyzed SPC oxidation was suitable for the nearly neutral pH condition, which was superior to the conventional Fenton oxidation in acidic condition. In addition, the investigations by using hydroxyl radical scavengers and free radical probe compounds elucidated that PCE was degraded mainly by hydroxyl radical (HO) oxidation in Fe(2+)/SPC system. In conclusion, Fe(2+)-catalyzed SPC oxidation is a highly promising technique for PCE-contaminated groundwater remediation, but more complex constituents in groundwater should be carefully considered for its practical application.


Journal of Hazardous Materials | 2015

Degradation of carbon tetrachloride in aqueous solution in the thermally activated persulfate system

Minhui Xu; Xiaogang Gu; Shuguang Lu; Zhaofu Qiu; Qian Sui; Zhouwei Miao; Xueke Zang; Xiaoliang Wu

Thermal activation of persulfate (PS) has been identified to be effective in the destruction of organic pollutants. The feasibility of carbon tetrachloride (CT) degradation in the thermally activated PS system was evaluated. The experimental results showed that CT could be readily degraded at 50 °C with a PS concentration of 0.5M, and CT degradation and PS consumption followed the pseudo-first order kinetic model. Superoxide radical anion (O2(*-)) was the predominant radical species responsible for CT degradation and the split of CCl was proposed as the possible reaction pathways for CT degradation. The process of CT degradation was accelerated by higher PS dose and lower initial CT concentration. No obvious effect of the initial pH on the degradation of CT was observed in the thermally activated PS system. Cl(*-), HCO3(*-), and humic acid (HA) had negative effects on CT degradation. In addition, the degradation of CT in the thermally activated PS system could be significantly promoted by the solvents addition to the solution. In conclusion, the thermally activated PS process is a promising option in in-situ chemical oxidation/reduction remediation for degrading highly oxidized organic contaminants such as CT that is widely detected in contaminated sites.


Journal of Hazardous Materials | 2017

Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor

Qian Sui; Wentao Zhao; Xuqi Cao; Shuguang Lu; Zhaofu Qiu; Xiaogang Gu; Gang Yu

Knowledge on the pharmaceuticals and personal care products (PPCPs) in landfill leachates, which are an important source of PPCPs in the environment, was very limited. Hence, four sampling campaigns were conducted to determine eighteen PPCPs in the landfill leachates from a landfill reservoir in Shanghai. Five of the target PPCPs were first included in a landfill leachate study. Additionally, their removal from landfill leachates by a full-scale membrane bioreactor (MBR) was illustrated. The results showed fourteen out of eighteen PPCPs were detectable in at least one sampling campaign and achieved individual concentrations ranging from 0.39 to 349μg/L in the landfill leachates. Some PPCPs exhibited higher contamination levels than those reported in other countries. Good removal of PPCPs by MBR led to a largely reduced contamination level (<LOQ to 10.6μg/L) in the treated landfill leachates, which was, however, still much higher than those in municipal wastewaters in Shanghai. To the best of our knowledge, this is the first report on the removal of PPCPs in landfill leachates. The findings emphasized the necessity to further study the PPCPs in the landfill leachates in China and the requirement to enhance their removal in the landfill leachates.


Chemical Engineering Journal | 2016

The destruction of benzene by calcium peroxide activated with Fe(II) in water

Yunfei Xue; Xiaogang Gu; Shuguang Lu; Zhouwei Miao; Mark L. Brusseau; Minhui Xu; Xiaori Fu; Xiang Zhang; Zhaofu Qiu; Qian Sui

The ability of Fe(II)-activated calcium peroxide (CaO2) to remove benzene is examined with a series of batch experiments. The results showed that benzene concentrations were reduced by 20 to 100% within 30 min. The magnitude of removal was dependent on the CaO2/Fe(II)/Benzene molar ratio, with much greater destruction observed for ratios of 4/4/1 or greater. An empirical equation was developed to quantify the destruction rate dependence on reagent composition. The presence of oxidative hydroxyl radicals (HO•) and reductive radicals (primarily O2•-) was identified by probe compound testing and electron paramagnetic resonance (EPR) tests. The results of the EPR tests indicated that the application of CaO2/Fe(II) enabled the radical intensity to remain steady for a relatively long time. The effect of initial solution pH was also investigated, and CaO2/Fe(II) enabled benzene removal over a wide pH range of 3.0~9.0. The results of radical scavenging tests showed that benzene removal occurred primarily by HO• oxidation in the CaO2/Fe(II) system, although reductive radicals also contributed. The intermediates in benzene destruction were identified to be phenol and biphenyl. The results indicate that Fe(II)-activated CaO2 is a feasible approach for treatment of benzene in contaminated groundwater remediation.


Chemical Engineering Journal | 2017

Benzene oxidation by Fe(III)-activated percarbonate: matrix-constituent effects and degradation pathways

Xiaori Fu; Xiaogang Gu; Shuguang Lu; Virender K. Sharma; Mark L. Brusseau; Yunfei Xue; Muhammad Danish; George Yuzhu Fu; Zhaofu Qiu; Qian Sui

Complete degradation of benzene by the Fe(III)-activated sodium percarbonate (SPC) system is demonstrated. Removal of benzene at 1.0 mM was seen within 160 min, depending on the molar ratios of SPC to Fe(III). A mechanism of benzene degradation was elaborated by free-radical probe-compound tests, free-radical scavengers tests, electron paramagnetic resonance (EPR) analysis, and determination of Fe(II) and H2O2 concentrations. The degradation products were also identified using gas chromatography-mass spectrometry method. The hydroxyl radical (HO.) was the leading species in charge of benzene degradation. The formation of HO. was strongly dependent on the generation of the organic compound radical (R.) and superoxide anion radical (O.). Benzene degradation products included hydroxylated derivatives of benzene (phenol, hydroquinone, benzoquinone, and catechol) and aliphatic acids (oxalic and fumaric acids). The proposed degradation pathways are consistent with radical formation and identified products. The investigation of selected matrix constituents showed that the Cl and HCO3 had inhibitory effects on benzene degradation. Natural organic matter (NOM) had accelerating influence in degrading benzene. The developed system was tested with groundwater samples and it was found that the Fe(III)-activated SPC has a great potential in effective remediation of benzene-contaminated groundwater while more further studies should be done for its practical application in the future because of the complex subsurface environment.


Applied Catalysis A-general | 2017

An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite

Muhammad Danish; Xiaogang Gu; Shuguang Lu; Mark L. Brusseau; Ayyaz Ahmad; Muhammad Naqvi; Usman Farooq; Waqas Qamar Zaman; Xiaori Fu; Zhouwei Miao

Zeolite supported nano iron-nickel bimetallic composite (Z-nZVI-Ni) was prepared using a liquid-phase reduction process. The corresponding surface morphologies and physico-chemical properties of the Z-nZVI-Ni composite were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray spectra (EDS), Brunauer Emmett Teller (BET) adsorption, wide angle X-ray diffractometry (WA-XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated high dispersion of iron and nickel nano particles on the zeolite sheet with an enhanced surface area. Complete destruction of trichloroethene (TCE) and efficient removal of total organic carbon (TOC) were observed by using Z-nZVI-Ni as a heterogeneous catalyst for a Fenton-like oxidation process employing sodium percarbonate (SPC) as an oxidant. The electron spin resonance (ESR) of Z-nZVI-Ni verified the generation and intensity of hydroxyl radicals (OH•). The quantification of OH• elucidated by using p-chlorobenzoic acid, a probe indicator, confirmed the higher intensity of OH•. The transformation products were identified using GC-MS. The slow iron and nickel leaching offered higher stability and better catalytic activity of Z-nZVI-Ni, demonstrating its prospective long term applications in groundwater for TCE degradation.


Journal of Hazardous Materials | 2015

Enhancement effects of reducing agents on the degradation of tetrachloroethene in the Fe(II)/Fe(III) catalyzed percarbonate system.

Zhouwei Miao; Xiaogang Gu; Shuguang Lu; Mark L. Brusseau; Ni Yan; Zhaofu Qiu; Qian Sui

In this study, the effects of reducing agents on the degradation of tetrachloroethene (PCE) were investigated in the Fe(II)/Fe(III) catalyzed sodium percarbonate (SPC) system. The addition of reducing agents, including hydroxylamine hydrochloride, sodium sulfite, ascorbic acid and sodium ascorbate, accelerated the Fe(III)/Fe(II) redox cycle, leading to a relatively steady Fe(II) concentration and higher production of free radicals. This, in turn, resulted in enhanced PCE oxidation by SPC, with almost complete PCE removal obtained for appropriate Fe and SPC concentrations. The chemical probe tests, using nitrobenzene and carbon tetrachloride, demonstrated that HO was the predominant radical in the system and that O2(-) played a minor role, which was further confirmed by the results of electron spin resonance measurements. PCE degradation decreased significantly with the addition of isopropanol, a HO scavenger, supporting the hypothesis that HO was primarily responsible for PCE degradation. It is noteworthy that Cl(-) release was slightly delayed in the first 20 min, indicating that intermediate products were produced. However, these intermediates were further degraded, resulting in the complete conversion of PCE to CO2. In conclusion, the use of reducing agents to enhance Fe(II)/Fe(III) catalyzed SPC oxidation appears to be a promising approach for the rapid degradation of organic contaminants in groundwater.


Water Science and Technology | 2009

Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.

Wenzhen Li; Shuguang Lu; Nuo Chen; Xiaogang Gu; Zhaofu Qiu; Ji Fan; Kuangfei Lin

As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.


Frontiers of Environmental Science & Engineering in China | 2016

Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid

Xiang Zhang; Xiaogang Gu; Shuguang Lu; Zhouwei Miao; Minhui Xu; Xiaori Fu; Muhammad Danish; Mark L. Brusseau; Zhaofu Qiu; Qian Sui

Trichloroethene (TCE) degradation by Fe(III)- activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO• and O2–• in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly to direct oxidation by HO•, while O2–• strengthened the generation of HO• by promoting Fe(III) transformation in the CP/Fe (III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl–, HCO3–, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl–production suggested that TCE degradation in the CP/Fe (III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater.

Collaboration


Dive into the Xiaogang Gu's collaboration.

Top Co-Authors

Avatar

Shuguang Lu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qian Sui

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhaofu Qiu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zhouwei Miao

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Minhui Xu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaori Fu

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xiang Zhang

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Muhammad Danish

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yunfei Xue

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge