Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoguang Meng is active.

Publication


Featured researches published by Xiaoguang Meng.


Engineering Geology | 2003

Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

Dimitris Dermatas; Xiaoguang Meng

Abstract Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic remediation technology to immobilize heavy metals in contaminated soils and sludges. In the present study, fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in artificially contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive X-ray (SEM–EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. The experimental results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of quicklime and fly ash to the contaminated soils effectively reduced heavy metal leachability well below the nonhazardous regulatory limits. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime–fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation. Overall, due to the presence of very high levels of heavy metal contamination along with sulfates in the solid matrices under study, the results presented herein can be applied to the management of incinerator and coal fly ash, boiler slag and flue gas desulfurization wastes.


Toxicology Letters | 2002

Combined effects of anions on arsenic removal by iron hydroxides

Xiaoguang Meng; George P. Korfiatis; Sunbaek Bang; Ki Woong Bang

Batch experiments were conducted to investigate the combined effects of phosphate, silicate, and bicarbonate on the removal of arsenic from Bangladesh groundwater (BGW) and simulated groundwater by iron hydroxides. The apparent adsorption constants indicated that the affinity of the anions for iron hydroxide sites decreased in the following order arsenate>phosphate>arsenite>silicate>bicarbonate. Phosphate, silicate, and bicarbonate decreased the removal of As(III) even at relatively low concentrations and low surface site coverage. Phosphate (0-0.08 mM), silicate (0-0.8 mM), and bicarbonate (0-14 mM) in separate solutions had none to moderate effects on As(V) removal in a solution containing 6.7 mg/l Fe and 0.3 ppm As(V). In the presence of bicarbonate and silicate the adverse effect of phosphate on As(V) adsorption was magnified. The residual As(V) concentration after iron hydroxide treatment increased from less than 13 microg/l in separate bicarbonate (2.2 mM) and phosphate (0.062 mM) solutions to 110 microg/l in the solution containing both anions. The results suggested the combined effects of phosphate, silicate, and bicarbonate caused the high mobility of arsenic in Bangladesh water.


Water Research | 2001

Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system

Xiaoguang Meng; George P. Korfiatis; Christos Christodoulatos; Sunbaek Bang

Laboratory and field tests were conducted to evaluate the effectiveness of a household filtration process and investigate the effects of phosphate and silicate on the removal of arsenic from Bangladesh groundwater by ferric hydroxides. Fe/As ratios of greater than 40 (mg/mg) were required to reduce arsenic to less than 50 microg/L in Bangladesh well water due to the presence of elevated phosphate and silicate concentrations. The household filtration process included co-precipitation of arsenic by adding a packet (approximately 2 g) of ferric and hypochlorite salts to 20 L of well water and subsequent filtration of the water through a bucket sand filter. A field demonstration study was performed to test the treatment system in seven households in Bangladesh in March and April 2000. Experimental results obtained from the participating families proved that the household treatment process removed arsenic from approximately 300 microg/L in the well water to less than 50 microg/L. The participating families liked this simple and affordable process and used it to prepare clean water for drinking and cooking. A larger scale field test is currently underway.


Journal of Hazardous Materials | 2012

Application of titanium dioxide in arsenic removal from water: A review

Xiaohong Guan; Juanshan Du; Xiaoguang Meng; Yuankui Sun; Bo Sun; Qinghai Hu

Natural arsenic pollution is a global phenomenon and various technologies have been developed to remove arsenic from drinking water. The application of TiO(2) and TiO(2)-based materials in removing inorganic and organic arsenic was summarized. TiO(2)-based arsenic removal methods developed to date have been focused on the photocatalytic oxidation (PCO) of arsenite/organic arsenic to arsenate and adsorption of inorganic and organic arsenic. Many efforts have been taken to improve the performance of TiO(2) by either combing TiO(2) with adsorbents with good adsorption property in one system or developing bifunctional adsorbents with both great photocatalytic ability and high adsorption capacity. Attempts have also been made to immobilize fine TiO(2) particles on supporting materials like chitosan beads or granulate it to facilitate its separation from water. Among the anions commonly exist in groundwater, humic acid and bicarbonate have significant influence on TiO(2) photocatalyzed oxidation of As(III)/organic arsenic while phosphate, silicate, fluoride, and humic acid affect arsenic adsorption by TiO(2)-based materials. There has been a controversy over the TiO(2) PCO mechanisms of arsenite for the past 10 years but the adsorption mechanisms of inorganic and organic arsenic onto TiO(2)-based materials are relatively well established. Future needs in TiO(2)-based arsenic removal technology are proposed.


Journal of Hazardous Materials | 2009

Perchlorate adsorption and desorption on activated carbon and anion exchange resin

In-Ho Yoon; Xiaoguang Meng; Chao Wang; Kyoung-Woong Kim; Sunbaek Bang; Eunyoung Choe; Lee Lippincott

The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.


Journal of Hazardous Materials | 2014

Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.

Xuejun Guo; Zhijun Wu; Mengchang He; Xiaoguang Meng; Xin Jin; Nan Qiu; Jing Zhang

Antimony is detected in soil and water with elevated concentration due to a variety of industrial applications and mining activities. Though antimony is classified as a pollutant of priority interest by the United States Environmental Protection Agency (USEPA) and Europe Union (EU), very little is known about its environmental behavior and adsorption mechanism. In this study, the adsorption behaviors and surface structure of antimony (III/V) on iron oxides were investigated using batch adsorption techniques, surface complexation modeling (SCM), X-ray photon spectroscopy (XPS) and extended X-ray absorption fine structure spectroscopy (EXAFS). The adsorption isotherms and edges indicated that the affinity of Sb(V) and Sb(III) toward the iron oxides depended on the Sb species, solution pH, and the characteristics of iron oxides. Sb(V) adsorption was favored at acidic pH and decreased dramatically with increasing pH, while Sb(III) adsorption was constant over a broad pH range. When pH is higher than 7, Sb(III) adsorption by goethite and hydrous ferric oxide (HFO) was greater than Sb(V). EXAFS analysis indicated that the majority of Sb(III), either adsorbed onto HFO or co-precipitated by FeCl3, was oxidized into Sb(V) probably due to the involvement of O2 in the long duration of sample preservation. Only one Sb-Fe subshell was filtered in the EXAFS spectra of antimony adsorption onto HFO, with the coordination number of 1.0-1.9 attributed to bidentate mononuclear edge-sharing ((2)E) between Sb and HFO.


Environmental Science & Technology | 2014

Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation.

Yuankui Sun; Xiaohong Guan; Jianmin Wang; Xiaoguang Meng; Chunhua Xu; Gongming Zhou

In this study, a weak magnetic field (WMF), superimposed with a permanent magnet, was utilized to improve ZVI corrosion and thereby enhance As(V)/As(III) removal by ZVI at pHini 3.0-9.0. The experiment with real arsenic-bearing groundwater revealed that WMF could greatly improve arsenic removal by ZVI even in the presence of various cations and anions. The WMF-induced improvement in As(V)/As(III) removal by ZVI should be primarily associated with accelerated ZVI corrosion, as evidenced by the pH variation, Fe(2+) release, and the formation of corrosion products as characterized with X-ray absorption fine structure spectroscopy. The arsenic species analysis in solution/solid phases at pHini 3.0 revealed that As(III) oxidation to As(V) in aqueous phase preceded its subsequent sequestration by the newly formed iron (hydr)oxides. However, both As(V) adsorption following As(III) oxidation to As(V) in solution and As(III) adsorption preceding its conversion to As(V) in solid phase were observed at pHini 5.0-9.0. The application of WMF accelerated the transformation of As(III) to As(V) in both aqueous and solid phases at pHini 5.0-9.0 and enhanced the oxidation of As(III) to As(V) in solution at pHini 3.0.


Journal of Hazardous Materials | 2011

Perchlorate removal by quaternary amine modified reed.

Salem Baidas; Baoyu Gao; Xiaoguang Meng

We report a kinetic and equilibrium study of perchlorate adsorption onto giant reed modified by quaternary amine (QA) functional groups in batch reactors. The effect of pH, contact time, and initial perchlorate concentration on removal was investigated. The adsorption capacity for perchlorate was 169 mg/g on the modified reed (MR) particles ranging in size from 100 to 250 μm. The isotherm results were best described by the combined Langmuir-Freundlich equation. Optimum removal occurred in the pH range 3.5-7.0 and was reduced at pH>8.5. The maximum adsorption rate occurred within the first minute of contact and equilibrium was achieved within 7 min. A three-stage adsorption occurred. In stage 1, adsorption was rapid and was controlled by boundary layer diffusion. In stage 2, adsorption was gradual and was controlled by both boundary layer and intraparticle diffusion. In stage 3, adsorption reached a plateau. The kinetic results fit well with a pseudo second-order equation. The adsorption mechanism was explored using Zeta potential analysis and Raman spectroscopy. Zeta potential measurements showed that reed modification enhanced perchlorate removal by increasing the surface potential. Electrostatic attraction between perchlorate anion and positively charged quaternary amine groups on the MR was the primary mechanism responsible for perchlorate removal.


Journal of Hazardous Materials | 2014

La3+-modified activated alumina for fluoride removal from water.

Jie-Min Cheng; Xiaoguang Meng; Chuanyong Jing; Jumin Hao

A La(3+)-modified activated alumina (La-AA) adsorbent was prepared for effective removal of fluoride from water. The surface properties of adsorbent were characterized with zeta potential analysis, SEM-EDS and EXAFS. Batch and column experiments were conducted to evaluate improvement of F(-) removal by the La-AA. SEM/EDS and EXAFS analyses determined the formation of La(OH)3 coating on the AA and strong bonding interactions between La(3+) and the Al atoms. The points of zero charge (pHPZC) of AA and La-AA were at pH 8.94 and 9.57, respectively. Batch experimental results indicated that the La-AA had much higher adsorption rate and capacity than the AA. The F(-) adsorption processes on La-AA and AA followed the pseudo-second-order kinetics and the Langmuir isotherm. Column filtration results shows that the La-AA and AA treated 270 and 170 bed volumes of the F(-)-spiked tap water, respectively, before F(-) breakthrough occurred. The results demonstrated that the La-AA was a promising adsorbent for effective removal of F(-) from water.


Journal of Hazardous Materials | 2013

Hexavalent chromium removal mechanism using conducting polymers

K.K. Krishnani; Sira Srinives; B.C. Mohapatra; Veera M. Boddu; Jumin Hao; Xiaoguang Meng; Ashok Mulchandani

We report detoxification of Cr(VI) into Cr(III) using electrochemically synthesized polyaniline (PANI), polypyrrole (PPY), PANI nanowires (PANI-NW) and palladium-decorated PANI (PANI-Pd) thin films. Percent Cr(VI) reduction was found to be decreased with an increase in pH from 1.8 to 6.8 and with initial Cr(VI) concentration ranging from 2.5 to 10mg/L. Efficacy of PANI increased at higher temp of 37 °C as compared to 30 °C. PANI-Pd was found to be most effective for all three initial Cr(VI) concentrations at pH 1.8. However, efficacy of PANI-Pd was significantly reduced at higher pHs of 5 and 6.8. Efficacy of PANI and PANI-NW was found to nearly the same. However, there was a significant reduction in effectiveness of PANI-NW at 10mg/L of Cr(VI) at all the three pHs studied, which could be attributed to degradation of PANI-NW by higher initial Cr(VI) concentration. PPY and PANI-NW were found to be highly sensitive with respect to pH and Cr(VI) initial concentration. Chromium speciation on PANI film was carried out by total chromium analysis and XPS, which revealed Cr(III) formation and its subsequent adsorption on the polymer. PANI-Pd and PANI are recommended for future sensor applications for chromium detection at low pH.

Collaboration


Dive into the Xiaoguang Meng's collaboration.

Top Co-Authors

Avatar

George P. Korfiatis

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chuanyong Jing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Christos Christodoulatos

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jumin Hao

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mei-Juan Han

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhonghou Xu

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lee Lippincott

New Jersey Department of Environmental Protection

View shared research outputs
Top Co-Authors

Avatar

Amalia Terracciano

Stevens Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sunbaek Bang

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chao Wang

Stevens Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge