Xiaohong S. Li
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaohong S. Li.
Journal of The Electrochemical Society | 2010
Wu Xu; Nathan L. Canfield; Deyu Wang; Jie Xiao; Zimin Nie; Xiaohong S. Li; Wendy D. Bennett; Charles C. Bonham; Ji-Guang Zhang
A new approach and simple method is described to produce macroporous metal sheet as current collector for anode in lithium ion battery. This method, based on slurry blending, tape casting, sintering, and reducing of metal oxides, produces a uniform, macroporous metal sheet. Silicon film sputter-coated on such porous copper substrate shows much higher capacity and longer cycle life than on smooth Cu foil. This methodology produces very limited wastes and is also adaptable to many other materials. It is easy for industrial scale production.
Journal of Biomedical Materials Research Part A | 2009
Barbara J. Tarasevich; Anna Gutowska; Xiaohong S. Li; Byeongmoon Jeong
Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery.
Frontiers in Energy Research | 2015
Jianming Zheng; Pengfei Yan; Meng Gu; Michael J. Wagner; Kevin A. Hays; Junzheng Chen; Xiaohong S. Li; Chong M. Wang; Ji-Guang Zhang; Jun Liu; Jie Xiao
Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of technical challenges, such as low Coulombic efficiency and poor long-term cycle life, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performances. These findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.
Separation Science and Technology | 2010
William D. Samuels; Nikki H. LaFemina; Vichaya Sukwarotwat; Wassana Yantasee; Xiaohong S. Li; Glen E. Fryxell
The chloromethylation of activated carbon is described. Chloromethylation was found to produce a carbon derivative with a surface area of 1310 m2/g and no significant change in the pore structure. The product was found to contain ∼1.5 mmole of ‒CH2Cl groups per g of material, similar to the functional density reported in the original Merrifield resin synthesis. Displacement of the benzylic chloride was achieved by treating this material with an excess of sodium thiosulfate in refluxing aqueous methanol. The resulting Bunte salt was then hydrolyzed by treatment with warm 3 M HCl to afford the corresponding thiol (“AC-CH2-SH”) cleanly and in high yield. AC-CH2-SH was found to be an effective heavy metal sorbent, efficiently capturing Hg, Pb, Ag, and Cu. Sorption kinetics were rapid, with equilibrium achieved in less than 30 minutes.
Chemical Communications | 2002
Jerome C. Birnbaum; Xiaohong S. Li; Clement R. Yonker; Glen E. Fryxell; Suresh Baskaran
The effects of storage temperature and time on deposition characteristics of molecularly templated silica sols, used in synthesis of mesoporous silica films, were investigated by preparing acid catalysed water-ethanol-TEOS sols with surfactant and analysing by silicon-29 NMR spectroscopy over a period of multiple days, and by producing films after specific storage times corresponding to collection of NMR spectral data, and analysed for thickness and porosity.
Archive | 2013
Karl O. Albrecht; Vassiliki Alexandra Glezakou; Roger J. Rousseau; Mark H. Engelhard; Tamas Varga; Robert J. Colby; John E. Jaffe; Xiaohong S. Li; Donghai Mei; Charles F. Windisch; Shawn M. Kathmann; Teresa L. Lemmon; Michel J. Gray; Todd R. Hart; Becky L. Thompson; Mark A. Gerber
The U.S. Department of Energy is conducting a program focused on developing a process for the conversion of biomass to bio-based fuels and co-products. Biomass-derived syngas is converted thermochemically within a temperature range of 240 to 330°C and at elevated pressure (e.g., 1200 psig) over a catalyst. Ethanol is the desired reaction product, although other side compounds are produced, including C3 to C5 alcohols; higher (i.e., greater than C1) oxygenates such as methyl acetate, ethyl acetate, acetic acid and acetaldehyde; and higher hydrocarbon gases such as methane, ethane/ethene, propane/propene, etc. Saturated hydrocarbon gases (especially methane) are undesirable because they represent a diminished yield of carbon to the desired ethanol product and represent compounds that must be steam reformed at high energy cost to reproduce CO and H2. Ethanol produced by the thermochemical reaction of syngas could be separated and blended directly with gasoline to produce a liquid transportation fuel. Additionally, higher oxygenates and unsaturated hydrocarbon side products such as olefins also could be further processed to liquid fuels. The goal of the current project is the development of a Rh-based catalyst with high activity and selectivity to C2+ oxygenates. This report chronicles an effort to characterize numerous supports and catalysts to identify particular traits that could be correlated with the most active and/or selective catalysts. Carbon and silica supports and catalysts were analyzed. Generally, analyses provided guidance in the selection of acceptable catalyst supports. For example, supports with high surface areas due to a high number of micropores were generally found to be poor at producing oxygenates, possibly because of mass transfer limitations of the products formed out of the micropores. To probe fundamental aspects of the complicated reaction network of CO with H2, a computational/ theoretical investigation using quantum mechanical and ab initio molecular dynamics calculations was initiated in 2009. Computational investigations were performed first to elucidate understanding of the nature of the catalytically active site. Thermodynamic calculations revealed that Mn likely exists as a metallic alloy with Rh in Rh-rich environments under reducing conditions at the temperatures of interest. After determining that reduced Rh-Mn alloy metal clusters were in a reduced state, the activation energy barriers of numerous transition state species on the catalytically active metal particles were calculated to compute the activation barriers of several reaction pathways that are possible on the catalyst surface. Comparison of calculations with a Rh nanoparticle versus a Rh-Mn nanoparticle revealed that the presence of Mn enabled the reaction pathway of CH with CO to form an adsorbed CHCO species, which was a precursor to C2+ oxygenates. The presence of Mn did not have a significant effect on the rate of CH4 production. Ir was observed during empirical catalyst screening experiments to improve the activity and selectivity of Rh-Mn catalysts. Thus, the addition of Ir to the Rh-Mn nanoparticles also was probed computationally. Simulations of Rh-Mn-Ir nanoparticles revealed that, with sufficient Ir concentrations, the Rh, Mn and Ir presumably would be well mixed within a nanoparticle. Activation barriers were calculated for Rh-Mn-Ir nanoparticles for several C-, H-, and O-containing transitional species on the nanoparticle surface. It was found that the presence of Ir opened yet another reactive pathway whereby HCO is formed and may undergo insertion with CHx surface moieties. The reaction pathway opened by the presence of Ir is in addition to the CO + CH pathway opened by the presence of Mn. Similar to Mn, the presence of Ir was not found to not affect the rate of CH4 production.
Archive | 2007
Zhenguo Yang; Guanguang Xia; Xiaohong S. Li; Prabhakar Singh; Jeffry W. Stevenson
Ferritic stainless steels are promising candidates for IT-SOFC interconnect applications due to their low cost and resistance to oxidation at SOFC operating temperatures. However, several challenges remain, including long term electrical conductivity and surface stability under interconnect exposure conditions and chromia scale evaporation. One means of extending interconnect lifetime and improving performance is to apply a protective coating, such as (Mn,Co)3O4 spinel, to the cathode side of the interconnect. These coatings have proven effective in reducing scale growth kinetics and Cr volatility. This report describes several procedures developed at PNNL for fabricating (Mn,Co)3O4 spinel coatings onto ferritic stainless steels.
Chemical Communications | 2003
Jerome C. Birnbaum; Glen E. Fryxell; Xiaohong S. Li; Christopher A. Coyle; Glen C. Dunham; Suresh Baskaran
The beneficial effects that alkali metal and alkylammonium salt additions to molecularly templated silica sols have on the resulting mesoporous silica films formed from evaporative-coating methods with respect to porosity, elastic modulus, dielectric constant, and film surface uniformity were investigated and identified.
Angewandte Chemie | 2005
Anna Gutowska; Liyu Li; Yongsoon Shin; Chong M. Wang; Xiaohong S. Li; John C. Linehan; R. Scott Smith; Bruce D. Kay; Benjamin A. Schmid; Wendy J. Shaw; Maciej Gutowski; Thomas Autrey
Advanced Materials | 2004
Yongsoon Shin; Xiaohong S. Li; Chongmin Wang; James E. Coleman; Gregory J. Exarhos