Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaohu Gao is active.

Publication


Featured researches published by Xiaohu Gao.


Nature Biotechnology | 2004

In vivo cancer targeting and imaging with semiconductor quantum dots

Xiaohu Gao; Yuanyuan Cui; Richard M Levenson; Leland W.K. Chung; Shuming Nie

We describe the development of multifunctional nanoparticle probes based on semiconductor quantum dots (QDs) for cancer targeting and imaging in living animals. The structural design involves encapsulating luminescent QDs with an ABC triblock copolymer and linking this amphiphilic polymer to tumor-targeting ligands and drug-delivery functionalities. In vivo targeting studies of human prostate cancer growing in nude mice indicate that the QD probes accumulate at tumors both by the enhanced permeability and retention of tumor sites and by antibody binding to cancer-specific cell surface biomarkers. Using both subcutaneous injection of QD-tagged cancer cells and systemic injection of multifunctional QD probes, we have achieved sensitive and multicolor fluorescence imaging of cancer cells under in vivo conditions. We have also integrated a whole-body macro-illumination system with wavelength-resolved spectral imaging for efficient background removal and precise delineation of weak spectral signatures. These results raise new possibilities for ultrasensitive and multiplexed imaging of molecular targets in vivo.


Nature Biotechnology | 2001

Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules

Ming-Yong Han; Xiaohu Gao; Jack Z. Su; Shuming Nie

Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide–capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.


Current Opinion in Biotechnology | 2002

Luminescent quantum dots for multiplexed biological detection and imaging

Warren C. W. Chan; Dustin J Maxwell; Xiaohu Gao; Robert E. Bailey; Ming-Yong Han; Shuming Nie

Recent advances in nanomaterials have produced a new class of fluorescent labels by conjugating semiconductor quantum dots with biorecognition molecules. These nanometer-sized conjugates are water-soluble and biocompatible, and provide important advantages over organic dyes and lanthanide probes. In particular, the emission wavelength of quantum-dot nanocrystals can be continuously tuned by changing the particle size, and a single light source can be used for simultaneous excitation of all different-sized dots. High-quality dots are also highly stable against photobleaching and have narrow, symmetric emission spectra. These novel optical properties render quantum dots ideal fluorophores for ultrasensitive, multicolor, and multiplexing applications in molecular biotechnology and bioengineering.


Chemical Society Reviews | 2010

Designing multifunctional quantum dots for bioimaging, detection, and drug delivery

Pavel Zrazhevskiy; Mark Sena; Xiaohu Gao

The emerging field of bionanotechnology aims at revolutionizing biomedical research and clinical practice via introduction of nanoparticle-based tools, expanding capabilities of existing investigative, diagnostic, and therapeutic techniques as well as creating novel instruments and approaches for addressing challenges faced by medicine. Quantum dots (QDs), semiconductor nanoparticles with unique photo-physical properties, have become one of the dominant classes of imaging probes as well as universal platforms for engineering of multifunctional nanodevices. Possessing versatile surface chemistry and superior optical features, QDs have found initial use in a variety of in vitro and in vivo applications. However, careful engineering of QD probes guided by application-specific design criteria is becoming increasingly important for successful transition of this technology from proof-of-concept studies towards real-life clinical applications. This review outlines the major design principles and criteria, from general ones to application-specific, governing the engineering of novel QD probes satisfying the increasing demands and requirements of nanomedicine and discusses the future directions of QD-focused bionanotechnology research (critical review, 201 references).


Nature Communications | 2010

Multifunctional nanoparticles as coupled contrast agents

Yongdong Jin; Congxian Jia; Sheng Wen Huang; Matthew O'Donnell; Xiaohu Gao

Engineering compact imaging probes with highly integrated modalities is a key focus in bionanotechnology and will have profound impact on molecular diagnostics, imaging and therapeutics. However, combining multiple components on a nanometre scale to create new imaging modalities unavailable from individual components has proven to be challenging. In this paper, we demonstrate iron oxide and gold-coupled core-shell nanoparticles (NPs) with well-defined structural characteristics (for example, size, shell thickness and core-shell separation) and physical properties (for example, electronic, magnetic, optical, thermal and acoustic). The resulting multifunctional nanoprobes not only offer contrast for electron microscopy, magnetic resonance imaging and scattering-based imaging but, more importantly, enable a new imaging mode, magnetomotive photoacoustic imaging, with remarkable contrast enhancement compared with photoacoustic images using conventional NP contrast agents.


Lancet Oncology | 2006

Emerging use of nanoparticles in diagnosis and treatment of breast cancer

Maksym Yezhelyev; Xiaohu Gao; Yun Xing; Ahmad Al-Hajj; Shuming Nie; Ruth O'Regan

The biological application of nanoparticles is a rapidly developing area of nanotechnology that raises new possibilities in the diagnosis and treatment of human cancers. In cancer diagnostics, fluorescent nanoparticles can be used for multiplex simultaneous profiling of tumour biomarkers and for detection of multiple genes and matrix RNA with fluorescent in-situ hybridisation. In breast cancer, three crucial biomarkers can be detected and accurately quantified in single tumour sections by use of nanoparticles conjugated to antibodies. In the near future, the use of conjugated nanoparticles will allow at least ten cancer-related proteins to be detected on tiny tumour sections, providing a new method of analysing the proteome of an individual tumour. Supermagnetic nanoparticles have exciting possibilities as contrast agents for cancer detection in vivo, and for monitoring the response to treatment. Several chemotherapy agents are available as nanoparticle formulations, and have at least equivalent efficacy and fewer toxic effects compared with conventional formulations. Ultimately, the use of nanoparticles will allow simultaneous tumour targeting and drug delivery in a unique manner. In this review, we give an overview of the use of clinically applicable nanoparticles in oncology, with particular focus on the diagnosis and treatment of breast cancer.


Journal of Biomedical Optics | 2002

Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding

Xiaohu Gao; Warren C. W. Chan; Shuming Nie

Semiconductor nanoparticles in the size range of 2-6 nm are of great current interest, not only because of their size-tunable properties but also because of their dimensional similarity with biological macromolecules (e.g., nucleic acids and proteins). This similarity could allow an integration of nanomaterials with biological molecules, which would have applications in medical diagnostics, targeted therapeutics, and high-throughput drug screening. Here we report new developments in preparing highly luminescent and biocompatible CdSe quantum dots (QDs), and in synthesizing QD-encoded micro- and nano-beads in the size range of 100 nm-10 microm. We show that the optical properties of ZnS-capped CdSe quantum dots are sensitive to environmental factors such as pH and divalent cations, leading to the potential use of quantum dots in molecular sensing. We also show that chemically modified proteins can be used to coat the surface of water-soluble QDs, to restore their fluorescence, and to provide functional groups for bioconjugation. For multiplexed optical encoding, we have prepared large microbeads with sizes similar to that of mammalian cells, and small nanobeads with sizes similar to that of viruses.


Journal of the American Chemical Society | 2008

Proton-Sponge Coated Quantum Dots for siRNA Delivery and Intracellular Imaging

Maksym Yezhelyev; Lifeng Qi; Ruth O'Regan; Shuming Nie; Xiaohu Gao

We report the rational design of multifunctional nanoparticles for short-interfering RNA (siRNA) delivery and imaging based on the use of semiconductor quantum dots (QDs) and proton-absorbing polymeric coatings (proton sponges). With a balanced composition of tertiary amine and carboxylic acid groups, these nanoparticles are specifically designed to address longstanding barriers in siRNA delivery such as cellular penetration, endosomal release, carrier unpacking, and intracellular transport. The results demonstrate dramatic improvement in gene silencing efficiency by 10-20-fold and simultaneous reduction in cellular toxicity by 5-6-fold, when compared directly with existing transfection agents for MDA-MB-231 cells. The QD-siRNA nanoparticles are also dual-modality optical and electron-microscopy probes, allowing real-time tracking and ultrastructural localization of QDs during delivery and transfection. These new insights and capabilities represent a major step toward nanoparticle engineering for imaging and therapeutic applications.


Nature Nanotechnology | 2009

Plasmonic fluorescent quantum dots

Yongdong Jin; Xiaohu Gao

Combining multiple discrete components into a single multifunctional nanoparticle could be useful in a variety of applications. Retaining the unique optical and electrical properties of each component after nanoscale integration is, however, a long-standing problem. It is particularly difficult when trying to combine fluorophores such as semiconductor quantum dots with plasmonic materials such as gold, because gold and other metals can quench the fluorescence. So far, the combination of quantum dot fluorescence with plasmonically active gold has only been demonstrated on flat surfaces. Here, we combine fluorescent and plasmonic activities in a single nanoparticle by controlling the spacing between a quantum dot core and an ultrathin gold shell with nanometre precision through layer-by-layer assembly. Our wet-chemistry approach provides a general route for the deposition of ultrathin gold layers onto virtually any discrete nanostructure or continuous surface, and should prove useful for multimodal bioimaging, interfacing with biological systems, reducing nanotoxicity, modulating electromagnetic fields and contacting nanostructures.


Small | 2008

Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging

Lily Yang; Hui Mao; Y. Andrew Wang; Zehong Cao; Xianghong Peng; Xiaoxia Wang; Hongwei Duan; Chunchun Ni; Qing-An Yuan; Gregory P. Adams; Mark Q. Smith; William C. Wood; Xiaohu Gao; Shuming Nie

Epidermal growth factor receptor (EGFR) targeted nanoparticle are developed by conjugating a single-chain anti-EGFR antibody (ScFvEGFR) to surface functionalized quantum dots (QDs) or magnetic iron oxide (IO) nanoparticles. The results show that ScFvEGFR can be successfully conjugated to the nanoparticles, resulting in compact ScFvEGFR nanoparticles that specifically bind to and are internalized by EGFR-expressing cancer cells, thereby producing a fluorescent signal or magnetic resonance imaging (MRI) contrast. In vivo tumor targeting and uptake of the nanoparticles in human cancer cells is demonstrated after systemic delivery of ScFvEGFR-QDs or ScFvEGFR-IO nanoparticles into an orthotopic pancreatic cancer model. Therefore, ScFvEGFR nanoparticles have potential to be used as a molecular-targeted in vivo tumor imaging agent. Efficient internalization of ScFvEGFR nanoparticles into tumor cells after systemic delivery suggests that the EGFR-targeted nanoparticles can also be used for the targeted delivery of therapeutic agents.

Collaboration


Dive into the Xiaohu Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoge Hu

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Pelivanov

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jinjun Xia

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Junwei Li

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Chen-Wei Wei

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge