Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaohua Douglas Zhang is active.

Publication


Featured researches published by Xiaohua Douglas Zhang.


Cell Host & Microbe | 2008

Genome-scale RNAi screen for host factors required for HIV replication.

Honglin Zhou; Min Xu; Qian Huang; Adam T. Gates; Xiaohua Douglas Zhang; John Castle; Erica Stec; Marc Ferrer; Berta Strulovici; Daria J. Hazuda; Amy S. Espeseth

Human immunodeficiency virus (HIV)-1 depends on the host cell machinery to support its replication. To discover cellular factors associated with HIV-1 replication, we conducted a genome-scale siRNA screen, revealing more than 311 host factors, including 267 that were not previously linked to HIV. Surprisingly, there was little overlap between these genes and the HIV dependency factors described recently. However, an analysis of the genes identified in both screens revealed overlaps in several of the associated pathways or protein complexes, including the SP1/mediator complex and the NF-kappaB signaling pathway. cDNAs for a subset of the identified genes were used to rescue HIV replication following knockdown of the cellular mRNA providing strong evidence that the following six genes are previously uncharacterized host factors for HIV: AKT1, PRKAA1, CD97, NEIL3, BMP2K, and SERPINB6. This study highlights both the power and shortcomings of large scale loss-of-function screens in discovering host-pathogen interactions.


Journal of Biological Chemistry | 2010

Inhibition of Calcineurin-mediated Endocytosis and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors Prevents Amyloid β Oligomer-induced Synaptic Disruption

Wei-Qin Zhao; Francesca Santini; Robert Breese; Dave Ross; Xiaohua Douglas Zhang; David J. Stone; Marc Ferrer; Matthew Townsend; Abigail Wolfe; Matthew A. Seager; Gene G. Kinney; Paul J. Shughrue; William J. Ray

Synaptic degeneration, including impairment of synaptic plasticity and loss of synapses, is an important feature of Alzheimer disease pathogenesis. Increasing evidence suggests that these degenerative synaptic changes are associated with an accumulation of soluble oligomeric assemblies of amyloid β (Aβ) known as ADDLs. In primary hippocampal cultures ADDLs bind to a subpopulation of neurons. However the molecular basis of this cell type-selective interaction is not understood. Here, using siRNA screening technology, we identified α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits and calcineurin as candidate genes potentially involved in ADDL-neuron interactions. Immunocolocalization experiments confirmed that ADDL binding occurs in dendritic spines that express surface AMPA receptors, particularly the calcium-impermeable type II AMPA receptor subunit (GluR2). Pharmacological removal of the surface AMPA receptors or inhibition of AMPA receptors with antagonists reduces ADDL binding. Furthermore, using co-immunoprecipitation and photoreactive amino acid cross-linking, we found that ADDLs interact preferentially with GluR2-containing complexes. We demonstrate that calcineurin mediates an endocytotic process that is responsible for the rapid internalization of bound ADDLs along with surface AMPA receptor subunits, which then both colocalize with cpg2, a molecule localized specifically at the postsynaptic endocytic zone of excitatory synapses that plays an important role in activity-dependent glutamate receptor endocytosis. Both AMPA receptor and calcineurin inhibitors prevent oligomer-induced surface AMPAR and spine loss. These results support a model of disease pathogenesis in which Aβ oligomers interact selectively with neurotransmission pathways at excitatory synapses, resulting in synaptic loss via facilitated endocytosis. Validation of this model in human disease would identify therapeutic targets for Alzheimer disease.


Journal of Biomolecular Screening | 2008

Median Absolute Deviation to Improve Hit Selection for Genome-Scale RNAi Screens

Namjin Chung; Xiaohua Douglas Zhang; Anthony Kreamer; Louis Locco; Pei Fen Kuan; Steven R. Bartz; Peter S. Linsley; Marc Ferrer; Berta Strulovici

High-throughput screening (HTS) of large-scale RNA interference (RNAi) libraries has become an increasingly popular method of functional genomics in recent years. Cell-based assays used for RNAi screening often produce small dynamic ranges and significant variability because of the combination of cellular heterogeneity, transfection efficiency, and the intrinsic nature of the genes being targeted. These properties make reliable hit selection in the RNAi screen a difficult task. The use of robust methods based on median and median absolute deviation (MAD) has been suggested to improve hit selection in such cases, but mean and standard deviation (SD)—based methods are still predominantly used in many RNAi HTS. In an experimental approach to compare these 2 methods, a genome-scale small interfering RNA (siRNA) screen was performed, in which the identification of novel targets increasing the therapeutic index of the chemotherapeutic agent mitomycin C (MMC) was sought. MAD values were resistant to the presence of outliers, and the hits selected by the MAD-based method included all the hits that would be selected by SD-based method as well as a significant number of additional hits. When retested in triplicate, a similar percentage of these siRNAs were shown to genuinely sensitize cells to MMC compared with the hits shared between SD- and MAD-based methods. Confirmed hits were enriched with the genes involved in the DNA damage response and cell cycle regulation, validating the overall hit selection strategy. Finally, computer simulations showed the superiority and generality of the MAD-based method in various RNAi HTS data models. In conclusion, the authors demonstrate that the MAD-based hit selection method rescued physiologically relevant false negatives that would have been missed in the SD-based method, and they believe it to be the desirable 1st-choice hit selection method for RNAi screen results. ( Journal of Biomolecular Screening 2008:149-158)


Pharmacogenomics | 2006

Robust statistical methods for hit selection in RNA interference high-throughput screening experiments

Xiaohua Douglas Zhang; Xiting Cindy Yang; Namjin Chung; Adam T. Gates; Erica Stec; Priya Kunapuli; Dan Holder; Marc Ferrer; Amy S. Espeseth

RNA interference (RNAi) high-throughput screening (HTS) experiments carried out using large (>5000 short interfering [si]RNA) libraries generate a huge amount of data. In order to use these data to identify the most effective siRNAs tested, it is critical to adopt and develop appropriate statistical methods. To address the questions in hit selection of RNAi HTS, we proposed a quartile-based method which is robust to outliers, true hits and nonsymmetrical data. We compared it with the more traditional tests, mean +/- k standard deviation (SD) and median +/- 3 median of absolute deviation (MAD). The results suggested that the quartile-based method selected more hits than mean +/- k SD under the same preset error rate. The number of hits selected by median +/- k MAD was close to that by the quartile-based method. Further analysis suggested that the quartile-based method had the greatest power in detecting true hits, especially weak or moderate true hits. Our investigation also suggested that platewise analysis (determining effective siRNAs on a plate-by-plate basis) can adjust for systematic errors in different plates, while an experimentwise analysis, in which effective siRNAs are identified in an analysis of the entire experiment, cannot. However, experimentwise analysis may detect a cluster of true positive hits placed together in one or several plates, while platewise analysis may not. To display hit selection results, we designed a specific figure called a plate-well series plot. We thus suggest the following strategy for hit selection in RNAi HTS experiments. First, choose the quartile-based method, or median +/- k MAD, for identifying effective siRNAs. Second, perform the chosen method experimentwise on transformed/normalized data, such as percentage inhibition, to check the possibility of hit clusters. If a cluster of selected hits are observed, repeat the analysis based on untransformed data to determine whether the cluster is due to an artifact in the data. If no clusters of hits are observed, select hits by performing platewise analysis on transformed data. Third, adopt the plate-well series plot to visualize both the data and the hit selection results, as well as to check for artifacts.


Journal of Biomolecular Screening | 2011

Illustration of SSMD, z score, SSMD*, z* score, and t statistic for hit selection in RNAi high-throughput screens.

Xiaohua Douglas Zhang

Hit selection is the ultimate goal in many high-throughput screens. Various analytic methods are available for this purpose. Some commonly used ones are z score, z* score, strictly standardized mean difference (SSMD), SSMD*, and t statistic. It is critical to know how to use them correctly because the misusage of them can readily produce misleading results. Here, the author presents basic concepts, elaborates their commonality and difference, describes some common misusage that people should avoid, and uses simulated simple examples to illustrate how to use them correctly.


Journal of Biomolecular Screening | 2007

A New Method with Flexible and Balanced Control of False Negatives and False Positives for Hit Selection in RNA Interference High-Throughput Screening Assays

Xiaohua Douglas Zhang

The z-score method and its variants for testing mean difference are commonly used for hit selection in high-throughput screening (HTS) assays. Strictly standardized mean difference (SSMD) offers a way to measure and classify the short interfering RNA (siRNA) effects. In this article, based on SSMD, the authors propose a new testing method for hit selection in RNA interference (RNAi) HTS assays. This SSMD-based method allows the differentiation between siRNAs with large and small effects on the assay output and maintains flexible and balanced control of both the false-negative rate, in which the siRNAs with strong effects are not selected as hits, and the restricted false-positive rate, in which the siRNAs with weak or no effects are selected as hits. This method directly addresses the size of siRNA effects represented by the strength of difference between an siRNA and a negative reference, whereas the classic z-score method and t-test of testing no mean difference address whether the mean of an siRNA is exactly the same as the mean of a negative reference. This method can readily control the false-negative rate, whereas it is nontrivial for the classic z-score method and t-test to control the false-negative rate. Therefore, theoretically, the SSMD-based method offers better control of the sizes of siRNA effects and the associated false-positive and false-negative rates than the commonly used z-score method and t-test for hit selection in HTS assays. The SSMD-based method should generally be applicable to any assay in which the end point is a difference in signal compared to a reference sample, including those for RNAi, receptor, enzyme, and cellular function. (Journal of Biomolecular Screening 2007:645-655)


Journal of Biomolecular Screening | 2007

The Use of Strictly Standardized Mean Difference for Hit Selection in Primary RNA Interference High-Throughput Screening Experiments

Xiaohua Douglas Zhang; Marc Ferrer; Amy S. Espeseth; Shane Marine; Erica Stec; Michael A. Crackower; Daniel J. Holder; Joseph F. Heyse; Berta Strulovici

RNA interference (RNAi) high-throughput screening (HTS) has been hailed as the 2nd genomics wave following the 1st genomics wave of gene expression microarrays and single-nucleotide polymorphism discovery platforms. Following an RNAi HTS, the authors are interested in identifying short interfering RNA (siRNA) hits with large inhibition/activation effects. For hit selection, the z-score method and its variants are commonly used in primary RNAi HTS experiments. Recently, strictly standardized mean difference (SSMD) has been proposed to measure the siRNA effect represented by the magnitude of difference between an siRNA and a negative reference group. The links between SSMD and d +-probability offer a clear interpretation of siRNA effects from a probability perspective. Hence, SSMD can be used as a ranking metric for hit selection. In this article, the authors investigated both the SSMD-based testing process and the use of SSMD as a ranking metric for hit selection in 2 primary siRNA HTS experiments. The analysis results showed that, as a ranking metric, SSMD was more stable and reliable than percentage inhibition and led to more robust hit selection results. Using the SSMD -based testing method, the false-negative rate can more readily be obtained. More important, the use of the SSMD-based method can result in a reduction in both the false-negative and false-positive rates. The applications presented in this article demonstrate that the SSMD method addresses scientific questions and fills scientific needs better than both percentage inhibition and the commonly used z-score method for hit selection. (Journal of Biomolecular Screening 2007:497-509)


Journal of Biomolecular Screening | 2008

Novel analytic criteria and effective plate designs for quality control in genome-scale RNAi screens.

Xiaohua Douglas Zhang

One of the most fundamental challenges in genome-wide RNA interference (RNAi) screens is to glean biological significance from mounds of data, which relies on the development and adoption of appropriate analytic methods and designs for quality control (QC) and hit selection. Currently, a Z-factor-based QC criterion is widely used to evaluate data quality. However, this criterion cannot take into account the fact that different positive controls may have different effect sizes and leads to inconsistent QC results in experiments with 2 or more positive controls with different effect sizes. In this study, based on a recently proposed parameter, strictly standardized mean difference (SSMD), novel QC criteria are constructed for evaluating data quality in genome-wide RNAi screens. Two good features of these novel criteria are: (1) SSMD has both clear original and probability meanings for evaluating the differentiation between positive and negative controls and hence the SSMD-based QC criteria have a solid probabilistic and statistical basis, and (2) these QC criteria obtain consistent QC results for multiple positive controls with different effect sizes. In addition, I propose multiple plate designs and the guidelines for using them in genome-wide RNAi screens. Finally, I provide strategies for using the SSMD-based QC criteria and effective plate design together to improve data quality. The novel SSMD-based QC criteria, effective plate designs, and related guidelines and strategies may greatly help to obtain high quality of data in genome-wide RNAi screens. (Journal of Biomolecular Screening 2008:363-377)


Nucleic Acids Research | 2008

Hit selection with false discovery rate control in genome-scale RNAi screens

Xiaohua Douglas Zhang; Pei Fen Kuan; Marc Ferrer; Xiaohua Shu; Yingxue C. Liu; Adam T. Gates; Priya Kunapuli; Erica Stec; Min Xu; Shane Marine; Daniel J. Holder; Berta Strulovici; Joseph F. Heyse; Amy S. Espeseth

RNA interference (RNAi) is a modality in which small double-stranded RNA molecules (siRNAs) designed to lead to the degradation of specific mRNAs are introduced into cells or organisms. siRNA libraries have been developed in which siRNAs targeting virtually every gene in the human genome are designed, synthesized and are presented for introduction into cells by transfection in a microtiter plate array. These siRNAs can then be transfected into cells using high-throughput screening (HTS) methodologies. The goal of RNAi HTS is to identify a set of siRNAs that inhibit or activate defined cellular phenotypes. The commonly used analysis methods including median ± kMAD have issues about error rates in multiple hypothesis testing and plate-wise versus experiment-wise analysis. We propose a methodology based on a Bayesian framework to address these issues. Our approach allows for sharing of information across plates in a plate-wise analysis, which obviates the need for choosing either a plate-wise or experimental-wise analysis. The proposed approach incorporates information from reliable controls to achieve a higher power and a balance between the contribution from the samples and control wells. Our approach provides false discovery rate (FDR) control to address multiple testing issues and it is robust to outliers.


Journal of Biomolecular Screening | 2008

Integrating Experimental and Analytic Approaches to Improve Data Quality in Genome-wide RNAi Screens

Xiaohua Douglas Zhang; Amy S. Espeseth; Eric N. Johnson; Jayne Chin; Adam T. Gates; Lyndon J. Mitnaul; Shane Marine; Jenny Tian; Eric M. Stec; Priya Kunapuli; Dan Holder; Joseph F. Heyse; Berta Strulovici; Marc Ferrer

RNA interference (RNAi) not only plays an important role in drug discovery but can also be developed directly into drugs. RNAi high-throughput screening (HTS) biotechnology allows us to conduct genome-wide RNAi research. A central challenge in genome-wide RNAi research is to integrate both experimental and computational approaches to obtain high quality RNAi HTS assays. Based on our daily practice in RNAi HTS experiments, we propose the implementation of 3 experimental and analytic processes to improve the quality of data from RNAi HTS biotechnology: (1) select effective biological controls; (2) adopt appropriate plate designs to display and/or adjust for systematic errors of measurement; and (3) use effective analytic metrics to assess data quality. The applications in 5 real RNAi HTS experiments demonstrate the effectiveness of integrating these processes to improve data quality. Due to the effectiveness in improving data quality in RNAi HTS experiments, the methods and guidelines contained in the 3 experimental and analytic processes are likely to have broad utility in genome-wide RNAi research. (Journal of Biomolecular Screening 2008:378-389)

Collaboration


Dive into the Xiaohua Douglas Zhang's collaboration.

Top Co-Authors

Avatar

Marc Ferrer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yan Shi

China-Japan Friendship Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhixin Cao

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Adam T. Gates

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge