Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojin Sha is active.

Publication


Featured researches published by Xiaojin Sha.


PLOS ONE | 2012

IL-35 is a novel responsive anti-inflammatory cytokine--a new system of categorizing anti-inflammatory cytokines.

Xinyuan Li; Jietang Mai; Anthony Virtue; Ying Yin; Ren Gong; Xiaojin Sha; Stefanie Gutchigian; Andrew Frisch; Imani Hodge; Xiaohua Jiang; Hong Wang; Xiao-Feng Yang

It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies.


Journal of Clinical and Experimental Cardiology | 2013

Regulatory T cells and Atherosclerosis.

Jahaira Lopez Pastrana; Xiaojin Sha; Anthony Virtue; Jietang Mai; Ramon Cueto; In Ae Lee; Hong Wang; Xiaofeng Yang

Atherosclerosis is a chronic autoimmune inflammatory disease. The involvement of both innate and adaptive immune responses in the pathogenesis of the disease has been well recognized. Tregs are an essential part of the immune system and have indispensable functions in maintaining immune system homeostasis, mediating peripheral tolerance, preventing autoimmune diseases, and suppressing inflammatory and proatherogenic immune response. Tregs carry out their immunosuppressive functions via several mechansims. One of the well-documented suppressive mechanisms of Tregs is the secretion of anti-inflammatory cytokines including IL-10, TGF-β, and IL-35. Studies have found that IL-10 and TGF-β have atheroprotective properties. In addition, Tregs can suppress the activity of proatherogenic effector T cells, suggesting an atheroprotective role. In fact, fewer Tregs are found in atherogenic ApoE-/- mice comparing to wild-type mice, suggesting an uncontrolled balance between weakened Tregs and effector T cells in atherogenesis. Some clinical studies of autoimmune diseases also suggest that decreased Tregs numbers are associated with increased disease activity. The importance of Tregs in many autoimmune diseases and experimental atherosclerosis has been established in in vivo and in vitro studies. However, the roles of Tregs in atherosclerosis in the clinical setting remains to be further characterized.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Early Hyperlipidemia Promotes Endothelial Activation via a Caspase-1-Sirtuin 1 Pathway

Ying Yin; Xinyuan Li; Xiaojin Sha; Hang Xi; Ya-Feng Li; Ying Shao; Jietang Mai; Anthony Virtue; Jahaira Lopez-Pastrana; Shu Meng; Douglas G. Tilley; M. Alexandra Monroy; Eric T. Choi; Craig J. Thomas; Xiaohua Jiang; Hong Wang; Xiaofeng Yang

Objective— The role of receptors for endogenous metabolic danger signals–associated molecular patterns has been characterized recently as bridging innate immune sensory systems for danger signals–associated molecular patterns to initiation of inflammation in bone marrow–derived cells, such as macrophages. However, it remains unknown whether endothelial cells (ECs), the cell type with the largest numbers and the first vessel cell type exposed to circulating danger signals–associated molecular patterns in the blood, can sense hyperlipidemia. This report determined whether caspase-1 plays a role in ECs in sensing hyperlipidemia and promoting EC activation. Approach and Results— Using biochemical, immunologic, pathological, and bone marrow transplantation methods together with the generation of new apoplipoprotein E (ApoE)−/−/caspase-1−/− double knockout mice, we made the following observations: (1) early hyperlipidemia induced caspase-1 activation in ApoE−/− mouse aorta; (2) caspase-1−/−/ApoE−/− mice attenuated early atherosclerosis; (3) caspase-1−/−/ApoE−/− mice had decreased aortic expression of proinflammatory cytokines and attenuated aortic monocyte recruitment; and (4) caspase-1−/−/ApoE−/− mice had decreased EC activation, including reduced adhesion molecule expression and cytokine secretion. Mechanistically, oxidized lipids activated caspase-1 and promoted pyroptosis in ECs by a reactive oxygen species mechanism. Caspase-1 inhibition resulted in accumulation of sirtuin 1 in the ApoE−/− aorta, and sirtuin 1 inhibited caspase-1 upregulated genes via activator protein-1 pathway. Conclusions— Our results demonstrate for the first time that early hyperlipidemia promotes EC activation before monocyte recruitment via a caspase-1–sirtuin 1–activator protein-1 pathway, which provides an important insight into the development of novel therapeutics for blocking caspase-1 activation as early intervention of metabolic cardiovascular diseases and inflammations.


Circulation Research | 2016

Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells

Hang Xi; Yuling Zhang; Yanjie Xu; William Y. Yang; Xiaohua Jiang; Xiaojin Sha; Xiaoshu Cheng; Jingfeng Wang; Xuebin Qin; Jun Yu; Yong Ji; Xiaofeng Yang; Hong Wang

RATIONALE Endothelial injury is an initial mechanism mediating cardiovascular disease. OBJECTIVE Here, we investigated the effect of hyperhomocysteinemia on programed cell death in endothelial cells (EC). METHODS AND RESULTS We established a novel flow-cytometric gating method to define pyrotosis (Annexin V(-)/Propidium iodide(+)). In cultured human EC, we found that: (1) homocysteine and lipopolysaccharide individually and synergistically induced inflammatory pyroptotic and noninflammatory apoptotic cell death; (2) homocysteine/lipopolysaccharide induced caspase-1 activation before caspase-8, caspase-9, and caspase-3 activations; (3) caspase-1/caspase-3 inhibitors rescued homocysteine/lipopolysaccharide-induced pyroptosis/apoptosis, but caspase-8/caspase-9 inhibitors had differential rescue effect; (4) homocysteine/lipopolysaccharide-induced nucleotide-binding oligomerization domain, and leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) protein caused NLRP3-containing inflammasome assembly, caspase-1 activation, and interleukin (IL)-1β cleavage/activation; (5) homocysteine/lipopolysaccharide elevated intracellular reactive oxygen species, (6) intracellular oxidative gradient determined cell death destiny as intermediate intracellular reactive oxygen species levels are associated with pyroptosis, whereas high reactive oxygen species corresponded to apoptosis; (7) homocysteine/lipopolysaccharide induced mitochondrial membrane potential collapse and cytochrome-c release, and increased B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio which were attenuated by antioxidants and caspase-1 inhibitor; and (8) antioxidants extracellular superoxide dismutase and catalase prevented homocysteine/lipopolysaccharide -induced caspase-1 activation, mitochondrial dysfunction, and pyroptosis/apoptosis. In cystathionine β-synthase-deficient (Cbs(-/-)) mice, severe hyperhomocysteinemia-induced caspase-1 activation in isolated lung EC and caspase-1 expression in aortic endothelium, and elevated aortic caspase-1, caspase-9 protein/activity and B-cell lymphoma 2-associated X protein/B-cell lymphoma 2 ratio in Cbs(-/-) aorta and human umbilical vein endothelial cells. Finally, homocysteine-induced DNA fragmentation was reversed in caspase-1(-/-) EC. Hyperhomocysteinemia-induced aortic endothelial dysfunction was rescued in caspase-1(-/-) and NLRP3(-/-) mice. CONCLUSIONS Hyperhomocysteinemia preferentially induces EC pyroptosis via caspase-1-dependent inflammasome activation leading to endothelial dysfunction. We termed caspase-1 responsive pyroptosis and apoptosis as pyrop-apoptosis.


Journal of Biological Chemistry | 2015

Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.

Xiaojin Sha; Shu Meng; Xinyuan Li; Hang Xi; Massimo Maddaloni; David W. Pascual; Huimin Shan; Xiaohua Jiang; Hong Wang; Xiao-Feng Yang

Background: Interleukin-35 is a novel inhibitory cytokine. Results: Interleukin-35 inhibits vascular endothelial cell activation by suppressing MAPK-AP1-mediated VACM-1 expression in LPS-induced acute inflammation. Conclusion: Interleukin-35 suppresses acute vascular endothelium response. Significance: Interleukin-35 may be an attractive reagent for anti-inflammatory therapy. Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.


Journal of Biological Chemistry | 2015

Inhibition of Caspase-1 Activation in Endothelial Cells Improves Angiogenesis: A NOVEL THERAPEUTIC POTENTIAL FOR ISCHEMIA.

Jahaira Lopez-Pastrana; Lucas M Ferrer; Ya-Feng Li; Xinyu Xiong; Hang Xi; Ramon Cueto; Jun Nelson; Xiaojin Sha; Xinyuan Li; Ann L Cannella; P. I. Imoukhuede; Xuebin Qin; Eric T. Choi; Hong Tian Wang; Xiaofeng Yang

Background: The interplay between dyslipidemia-induced inflammation and angiogenesis remains poorly understood. Results: Inhibition of caspase-1 improves VEGFR-2 signaling, tube formation, and blood perfusion in ischemic tissues. Conclusion: The suppression of caspase-1 improves angiogenesis and ischemia prognosis. Significance: Caspase-1 suppression is a novel therapeutic target for improvement of angiogenesis and ischemia under inflammatory environments. Deficient angiogenesis may contribute to worsen the prognosis of myocardial ischemia, peripheral arterial disease, ischemic stroke, etc. Dyslipidemic and inflammatory environments attenuate endothelial cell (EC) proliferation and angiogenesis, worsening the prognosis of ischemia. Under these dyslipidemic and inflammatory environments, EC-caspase-1 becomes activated and induces inflammatory cell death that is defined as pyroptosis. However, the underlying mechanism that correlates caspase-1 activation with angiogenic impairment and the prognosis of ischemia remains poorly defined. By using flow cytometric analysis, enzyme and receptor inhibitors, and hind limb ischemia model in caspase-1 knock-out (KO) mice, we examined our novel hypothesis, i.e. inhibition of caspase-1 in ECs under dyslipidemic and inflammatory environments attenuates EC pyroptosis, improves EC survival mediated by vascular endothelial growth factor receptor 2 (VEGFR-2), angiogenesis, and the prognosis of ischemia. We have made the following findings. Proatherogenic lipids induce higher caspase-1 activation in larger sizes of human aortic endothelial cells (HAECs) than in smaller sizes of HAECs. Proatherogenic lipids increase pyroptosis significantly more in smaller sizes of HAECs than in larger sizes of the cells. VEGFR-2 inhibition increases caspase-1 activation in HAECs induced by lysophosphatidylcholine treatment. Caspase-1 activation inhibits VEGFR-2 expression. Caspase-1 inhibition improves the tube formation of lysophosphatidylcholine-treated HAECs. Finally, caspase-1 depletion improves angiogenesis and blood flow in mouse hind limb ischemic tissues. Our results have demonstrated for the first time that inhibition of proatherogenic caspase-1 activation in ECs improves angiogenesis and the prognosis of ischemia.


Journal of Cardiovascular Translational Research | 2016

Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets—“Sand Out and Gold Stays”

Ying Shao; Valeria Chernaya; Candice Johnson; William Y. Yang; Ramon Cueto; Xiaojin Sha; Yi Zhang; Xuebin Qin; Jianxin Sun; Eric T. Choi; Hong Wang; Xiao-Feng Yang

To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of “Sand out and Gold stays,” where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2018

IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14)

Xinyuan Li; Ying Shao; Xiaojin Sha; Pu Fang; Yin-Ming Kuo; Andrew J. Andrews; Ya-Feng Li; William Y. Yang; Massimo Maddaloni; David W. Pascual; Jin Jun Luo; Xiaohua Jiang; Hong Wang; Xiaofeng Yang

Objective— IL-35 (interleukin-35) is an anti-inflammatory cytokine, which inhibits immune responses by inducing regulatory T cells and regulatory B cells and suppressing effector T cells and macrophages. It remains unknown whether atherogenic stimuli induce IL-35 and whether IL-35 inhibits atherogenic lipid-induced endothelial cell (EC) activation and atherosclerosis. EC activation induced by hyperlipidemia stimuli, including lysophosphatidylcholine is considered as an initiation step for monocyte recruitment and atherosclerosis. In this study, we examined the expression of IL-35 during early atherosclerosis and the roles and mechanisms of IL-35 in suppressing lysophosphatidylcholine-induced EC activation. Approach and Results— Using microarray and ELISA, we found that IL-35 and its receptor are significantly induced during early atherosclerosis in the aortas and plasma of ApoE (apolipoprotein E) knockout mice—an atherosclerotic mouse model—and in the plasma of hypercholesterolemic patients. In addition, we found that IL-35 suppresses lysophosphatidylcholine-induced monocyte adhesion to human aortic ECs. Furthermore, our RNA-sequencing analysis shows that IL-35 selectively inhibits lysophosphatidylcholine-induced EC activation-related genes, such as ICAM-1 (intercellular adhesion molecule-1). Mechanistically, using flow cytometry, mass spectrometry, electron spin resonance analyses, and chromatin immunoprecipitation-sequencing analyses, we found that IL-35 blocks lysophosphatidylcholine-induced mitochondrial reactive oxygen species, which are required for the induction of site-specific H3K14 (histone 3 lysine 14) acetylation, increased binding of proinflammatory transcription factor AP-1 in the promoter of ICAM-1, and induction of ICAM-1 transcription in human aortic EC. Finally, IL-35 cytokine therapy suppresses atherosclerotic lesion development in ApoE knockout mice. Conclusions— IL-35 is induced during atherosclerosis development and inhibits mitochondrial reactive oxygen species-H3K14 acetylation-AP-1–mediated EC activation.


Oncotarget | 2017

Loss of Egr1, a human del5q gene, accelerates BCR-ABL driven chronic myelogenous leukemia

Silvia Maifrede; Andrew Magimaidas; Xiaojin Sha; Kaushiki Mukherjee; Dan A. Liebermann; Barbara Hoffman

There is substantial evidence that early growth response-1 (Egr1) gene, a zinc-finger transcription factor, behaves as a tumor suppressor in leukemia. This includes reports from this laboratory that constitutive Egr1 overrides leukemia conferred by deregulated c-Myc or E2F-1 in the M1 myeloid leukemic cell line by promoting differentiation. To investigate the effect of Egr1 on the initiation and progression of Chronic Myelogenous Leukemia (CML), lethally irradiated syngeneic wild type mice were reconstituted with bone marrow (BM) from either wild type or Egr1 null mice transduced with a 210-kD BCR-ABL-expressing MSCV-retrovirus (bone marrow transplantation {BMT}). Loss of Egr1 was observed to accelerate the development of BCR-ABL driven leukemia in recipient mice, resulting in the development of a more aggressive disease, a significantly shortened median survival time, and increased BCR-ABL expressing leukemic stem/progenitor cells (GFP+Lin-cKit+Sca+). Egr1 deficient progenitors expressing BCR-ABL exhibited decreased apoptosis, and increased cell viability and proliferation relative to WT counterparts. Secondary BMT of BCR-ABL BM revealed that loss of Egr1 resulted in enrichment of LSCs, consistent with shorter survival time and more aggressive disease of these mice compared to WT counterparts. Furthermore, serial re-plating colony assays indicated that loss of Egr1 increased self-renewal ability of BCR-ABL expressing BM. These novel findings on the tumor suppressor role of Egr1 in CML provide the impetus to study the effect of altering Egr1 expression in AML, where the overall five year survival rate remains low. The effect of loss of Egr1 in CML could reflect its established functions in normal hematopoiesis, maintaining quiescence of HSCs and driving terminal differentiation to the monocyte/macrophage lineage. Gain of function studies should validate these conclusions and provide further rationale for increased Egr1 as a therapeutic target in AML.


Oncotarget | 2018

Loss of Gadd45b accelerates BCR-ABL-driven CML

Xiaojin Sha; Barbara Hoffman; Dan A. Liebermann

Gadd45b is a member of Gadd45 stress sensor protein family that also includes Gadd45a & Gadd45g. To investigate the effect of Gadd45b in bcr-abl oncogene driven chronic myeloid leukemia (CML) development, syngeneic wild type lethally irradiated mice were reconstituted with either wild type or Gadd45b null myeloid progenitors transduced with a retroviral vector expressing BCR-ABL. Loss of Gadd45b was observed to accelerate BCR-ABL driven CML development with shortened median mouse survival time. BCR-ABL Gadd45b deficient CML progenitors exhibited increased proliferation and decreased apoptosis, associated with hyper-activation of c-Jun NH2-terminal kinase and Stat5. These results provide novel evidence that gadd45b, like gadd45a, functions as a suppressor of BCR-ABL driven leukemia, albeit via a different mechanism.

Collaboration


Dive into the Xiaojin Sha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaofeng Yang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge