Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojin Xu is active.

Publication


Featured researches published by Xiaojin Xu.


Emerging microbes & infections | 2016

flrA, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus

Gang Luo; Lixing Huang; Yongquan Su; Yingxue Qin; Xiaojin Xu; Lingmin Zhao; Qingpi Yan

Adhesion is an important virulence trait of Vibrio alginolyticus. Bacterial adhesion is influenced by environmental conditions; however, the molecular mechanism underlying this effect remains unknown. The expression levels of flrA, flrB and flrC were significantly downregulated in adhesion-deficient V. alginolyticus strains cultured under Cu2+, Pb2+, Hg2+ and low-pH stresses. Silencing these genes led to deficiencies in adhesion, motility, flagellar assembly, biofilm formation and exopolysaccharide (EPS) production. The expression levels of fliA, flgH, fliS, fliD, cheR, cheV and V12G01_22158 (Gene ID) were significantly downregulated in all of the RNAi groups, whereas the expression levels of toxT, ctxB, acfA, hlyA and tlh were upregulated in flrA- and flrC-silenced groups. These genes play a key role in the virulence mechanisms of most pathogenic Vibrio species. Furthermore, the expression of flrA, flrB and flrC was significantly influenced by temperature, salinity, starvation and pH. These results indicate that (1) flrA, flrB and flrC are important for V. alginolyticus adhesion; (2) flrA, flrB and flrC significantly influence bacterial adhesion, motility, biofilm formation and EPS production by controlling expression of key genes involved in those phenotypes; and (3) flrA, flrB and flrC regulate adhesion in the natural environment with different temperatures, pH levels, salinities and starvation time. Emerging Microbes & Infections (2016) 5, e85; doi:10.1038/emi.2016.82; published online 3 August 2016


Frontiers in Cellular and Infection Microbiology | 2015

Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses.

Lu Wang; Lixing Huang; Yongquan Su; Yingxue Qin; Wendi Kong; Ying Ma; Xiaojin Xu; Mao Lin; Jiang Zheng; Qingpi Yan

Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environmental conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion deficient strains were obtained by culturing V. alginolyticus under stresses including Cu, Pb, Hg, and low pH. With RNA-seq and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environmental conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that (1) the flagellar assembly pathway was sensitive to environmental stresses, (2) the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and (3) motility is not the only way in which the flagellar assembly pathway affects adhesion.


Frontiers in Cellular and Infection Microbiology | 2015

Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes

Lixing Huang; Jiao Hu; Yongquan Su; Yingxue Qin; Wendi Kong; Ying Ma; Xiaojin Xu; Mao Lin; Qingpi Yan

The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu2+, Pb2+, Hg2+, and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacterias pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.


Frontiers in Microbiology | 2016

The TCA Pathway is an Important Player in the Regulatory Network Governing Vibrio alginolyticus Adhesion Under Adversity

Lixing Huang; Li Huang; Qingpi Yan; Yingxue Qin; Ying Ma; Mao Lin; Xiaojin Xu; Jiang Zheng

Adhesion is a critical step in the initial stage of Vibrio alginolyticus infection; therefore, it is important to understand the underlying mechanisms governing the adhesion of V. alginolyticus and determine if environmental factors have any effect. A greater understanding of this process may assist in developing preventive measures for reducing infection. In our previous research, we presented the first RNA-seq data from V. alginolyticus cultured under stress conditions that resulted in reduced adhesion. Based on the RNA-seq data, we found that the Tricarboxylic acid cycle (TCA pathway) might be closely related to adhesion. Environmental interactions with the TCA pathway might alter adhesion. To validate this, bioinformatics analysis, quantitative Real-Time PCR (qPCR), RNAi, and in vitro adhesion assays were performed, while V. alginolyticus was treated with various stresses including temperature, pH, salinity, and starvation. The expression of genes involved in the TCA pathway was confirmed by qPCR, which reinforced the reliability of the sequencing data. Silencing of these genes was capable of reducing the adhesion ability of V. alginolyticus. Adhesion of V. alginolyticus is influenced substantially by environmental factors and the TCA pathway is sensitive to some environmental stresses, especially changes in pH and starvation. Our results indicated that (1) the TCA pathway plays a key role in V. alginolyticus adhesion: (2) the TCA pathway is sensitive to environmental stresses.


Frontiers in Microbiology | 2016

Genome-Wide Detection of Predicted Non-coding RNAs Related to the Adhesion Process in Vibrio alginolyticus Using High-Throughput Sequencing

Lixing Huang; Jiao Hu; Yongquan Su; Yingxue Qin; Wendi Kong; Lingmin Zhao; Ying Ma; Xiaojin Xu; Mao Lin; Jiang Zheng; Qingpi Yan

The ability of bacteria to adhere to fish mucus can be affected by environmental conditions and is considered to be a key virulence factor of Vibrio alginolyticus. However, the molecular mechanism underlying this ability remains unclear. Our previous study showed that stress conditions such as exposure to Cu, Pb, Hg, and low pH are capable of reducing the adhesion ability of V. alginolyticus. Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, thereby affecting bacterial pathogenicity. Thus, we hypothesized that ncRNAs play a key role in the V. alginolyticus adhesion process. To validate this, we combined high-throughput sequencing with computational techniques to detect ncRNA dynamics in samples after stress treatments. The expression of randomly selected novel ncRNAs was confirmed by QPCR. Among the significantly altered ncRNAs, 30 were up-regulated and 2 down-regulated by all stress treatments. The QPCR results reinforced the reliability of the sequencing data. Target prediction and KEGG pathway analysis indicated that these ncRNAs are closely related to pathways associated with in vitro adhesion, and our results indicated that chemical stress-induced reductions in the adhesion ability of V. alginolyticus might be due to the perturbation of ncRNA expression. Our findings provide important information for further functional characterization of ncRNAs during the adhesion process of V. alginolyticus.


Diseases of Aquatic Organisms | 2016

Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds

Mao Lin; Xiaomei Wu; Qingpi Yan; Ying Ma; Lixing Huang; Yingxue Qin; Xiaojin Xu

The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored.


Genetics and Molecular Research | 2015

Intracellular survival of virulence and low-virulence strains of Vibrio parahaemolyticus in Epinephelus awoara macrophages and peripheral leukocytes

Xiaojin Xu; Sang Bh; Chen Wb; Yan Qp; Xiong Zy; Su Jb; Zou Wz

In this study, we examined the virulence factors and pathogenesis of Vibrio parahaemolyticus in Epinephelus awoara. The chemotactic motility of V. parahaemolyticus for phagocytosis and intracellular survival in fish macrophages was determined using virulence strains and low-virulence strains of V. parahaemolyticus. We found that the intracellular mean number of virulence strains of V. parahaemolyticus ranged from 0-180 min after co-incubation with macrophages and peripheral leukocytes, was relatively low, and decreased steadily over the observation period. Low-virulence strains of V. parahaemolyticus were unable to survive in peripheral leukocytes and macrophages. Cell viability in response to V. parahaemolyticus was assessed using the MTT assay. Low-virulence V. parahaemolyticus strains exhibited lower cytotoxicity compared to virulent strains. The average percent of live macrophages and peripheral leukocytes infected by V. parahaemolyticus ranged from 13.50-79.20%. These results indicate that V. parahaemolyticus in E. awoara is a facultative intracellular bacterium that may be involved in virulence.


MicrobiologyOpen | 2017

AcuC, a histone deacetylase, contributes to the pathogenicity of Aeromonas hydrophila

Qingling Jiang; Wenbo Chen; Yingxue Qin; Lixing Huang; Xiaojin Xu; Lingmin Zhao; Qingpi Yan

The interactions of pathogens and phagocytes are complex. Our study demonstrated that Aeromonas hydrophila B11 can survive in the macrophagocytes of Tilapia mossambica. To explore the regulatory processes of A. hydrophila survival in the macrophagocytes, we used the mini‐Tn10 transposon mutagenesis system to build a mutant library by mixing Escherichia coli Sm10 (pLOFKm) and A. hydrophila B11. In total, 102 mutant colonies were detected, and 11 of them showed reduced survival in macrophagocytes. The mutant with the most severe phenotype, AM73, was chosen for further research. The ORF interrupted by mini‐Tn10 in AM73 was approximately 960 bp and was deposited in GenBank with the accession number SRP049226. The 319 amino acid protein encoded by the ORF showed a high degree of identity (89%) with proteins in the histone deacetylase/AcuC/AphA family of A. hydrophila subsp. hydrophila ATCC7966. A strain (AC73) in which the acuC mutation was complemented was constructed by generating the recombinant expression plasmid pACYC184‐acuC and introducing it into the AM73 mutant strain. Our experiments revealed that strain AM73 was deficient in biofilm formation, adhesion, survival in macrophagocytes, and virulence compared with A. hydrophila B11, and all of these biological properties were improved in strain AC73. The expression of 10 significant virulence genes was significantly inhibited in strain AM73. The results indicated that AcuC was an important regulatory protein contributing to the pathogenicity of A. hydrophila.


MicrobiologyOpen | 2017

mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors

Lixing Huang; Lu Wang; Xiangzhi Lin; Yongquan Su; Yingxue Qin; Wendi Kong; Lingmin Zhao; Xiaojin Xu; Qingpi Yan

Adhesion is a key virulence factor of pathogens and can be affected by the environment. Our previously research with RNA‐seq indicated that mcp, aer, cheB, and cheV might play roles in the regulation of adhesion in Vibrio alginolyticus (ND‐01). In order to determine whether and how environmental factors affect adhesion through these genes, gene silencing was performed followed by quantitative real‐time PCR (qRT‐PCR), RNAi, transmission electron microscopy, and adhesion, capillary, and motility assays to verify how these genes influence adhesion. Silencing these genes led to deficiencies in adhesion, chemotaxis, flagellar assembly, and motility. The expression levels of cheA, cheW, and cheY, which are important genes closely related to the functions of mcp, aer, cheV, and cheB, were significantly downregulated in all of the RNAi groups. The expression of mcp, aer, cheV, and cheB under different gradients of temperature, pH, and salinity and after starvation for various durations was also detected, which showed that these genes were sensitive to certain environmental stresses, particularly pH and starvation. Our results indicated that mcp, aer, cheB, and cheV: (1) are necessary for ND‐01 adhesion; (2) play key roles in the bacterial chemotaxis pathway by controlling the expression of downstream genes; (3) might affect adhesion by impacting motility, though motility is not the only route through which adhesion is affected; and (4) contribute to the regulation of ND‐01 adhesion in natural environments with different temperatures, pH levels, and salinities as well as after various starvation periods.


MicrobiologyOpen | 2018

The complete genome sequence of Vibrio aestuarianus W-40 reveals virulence factor genes

Xiaojin Xu; Lixing Huang; Yongquan Su; Qingpi Yan

Vibrio aestuarianus is an opportunistic environmental pathogen that has been associated with epidemics in cultured shrimp Penaeus vannamei. Hepatopancreas microsporidian (HPM) and monodon slow growth syndrome (MSGS) have been reported in cultured P. vannamei. In this study, we sequenced and assembled the whole genome of V. aestuarianus strain W‐40, a strain that was originally isolated from the intestines of an infected P. vannamei. The genome of V. aestuarianus strain W‐40 contains two circular chromosomes of 483,7307 bp with a 46.23% GC content. We identified 4,457 open reading frames (ORFs) that occupy 86.35% of the genome. Vibrio aestuarianus strain W‐40 consists primarily of the ATP‐binding cassette (ABC) transporter system and the phosphotransferase system (PTS). CagA is a metabolism system that includes bacterial extracellular solute‐binding protein. Glutathione reductase can purge superoxide radicals ( O22− ) and hydrogen peroxide (H2O2) damage in V. aestuarianus strain W‐40. The presence of two compete type I restriction‐modification systems was confirmed. A total of 42 insertion sequences (IS) elements and 16 IS elements were identified. Our results revealed a host of virulence factors that likely contribute to the pathogenicity of V. aestuarianus strain W‐40, including the virulence factor genes vacA, clpC, and bvgA, which are important for biofilm dispersion. Several bacitracin and tetracycline antibiotic resistance‐encoding genes and type VI secretion systems were also identified in the genome. The complete genome sequence will aid future studies of the pathogenesis of V. aestuarianus strain W‐40 and allow for new strategies to control disease to be developed.

Collaboration


Dive into the Xiaojin Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge