Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojing Tang is active.

Publication


Featured researches published by Xiaojing Tang.


Nature | 2001

Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication

Piers Nash; Xiaojing Tang; Stephen Orlicky; Qinghua Chen; Frank B. Gertler; Michael D. Mendenhall; Frank Sicheri; Tony Pawson; Mike Tyers

SCF ubiquitin ligases target phosphorylated substrates for ubiquitin-dependent proteolysis by means of adapter subunits called F-box proteins. The F-box protein Cdc4 captures phosphorylated forms of the cyclin-dependent kinase inhibitor Sic1 for ubiquitination in late G1 phase, an event necessary for the onset of DNA replication. The WD40 repeat domain of Cdc4 binds with high affinity to a consensus phosphopeptide motif (the Cdc4 phospho-degron, CPD), yet Sic1 itself has many sub-optimal CPD motifs that act in concert to mediate Cdc4 binding. The weak CPD sites in Sic1 establish a phosphorylation threshold that delays degradation in vivo, and thereby establishes a minimal G1 phase period needed to ensure proper DNA replication. Multisite phosphorylation may be a more general mechanism to set thresholds in regulated protein–protein interactions.


Science | 2010

A Global Protein Kinase and Phosphatase Interaction Network in Yeast

Ashton Breitkreutz; Hyungwon Choi; Jeffrey R. Sharom; Lorrie Boucher; Victor Neduva; Brett Larsen; Zhen Yuan Lin; Bobby Joe Breitkreutz; Chris Stark; Guomin Liu; Jessica Ahn; Danielle Dewar-Darch; Teresa Reguly; Xiaojing Tang; Ricardo Almeida; Zhaohui S. Qin; Tony Pawson; Anne-Claude Gingras; Alexey I. Nesvizhskii; Mike Tyers

Budding Yeast Kinome Revealed Covalent modification of proteins by phosphorylation is a primary means by which cells control the biochemical activities and functions of proteins. To better understand the full spectrum of cellular control mechanisms mediated by phosphorylation, Breitkreutz et al. (p. 1043; see the Perspective by Levy et al.) used mass spectrometry to identify proteins that interacted with the complete set of protein kinases from budding yeast and with other molecules, including phosphatases, which influence phosphorylation reactions. The results reveal a network of interacting protein kinases and phosphatases, and analysis of other interacting proteins suggests previously undiscovered roles for many of these enzymes. Phosphorylation reactions in budding yeast reveal the regulatory architecture of a fundamental cellular control system. The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses.


Cell | 2003

Structural Basis for Phosphodependent Substrate Selection and Orientation by the SCFCdc4 Ubiquitin Ligase

Stephen Orlicky; Xiaojing Tang; Andrew Willems; Mike Tyers; Frank Sicheri

Cell cycle progression depends on precise elimination of cyclins and cyclin-dependent kinase (CDK) inhibitors by the ubiquitin system. Elimination of the CDK inhibitor Sic1 by the SCFCdc4 ubiquitin ligase at the onset of S phase requires phosphorylation of Sic1 on at least six of its nine Cdc4-phosphodegron (CPD) sites. A 2.7 A X-ray crystal structure of a Skp1-Cdc4 complex bound to a high-affinity CPD phosphopeptide from human cyclin E reveals a core CPD motif, Leu-Leu-pThr-Pro, bound to an eight-bladed WD40 propeller domain in Cdc4. The low affinity of each CPD motif in Sic1 reflects structural discordance with one or more elements of the Cdc4 binding site. Reengineering of Cdc4 to reduce selection against Sic1 sequences allows ubiquitination of lower phosphorylated forms of Sic1. These features account for the observed phosphorylation threshold in Sic1 recognition and suggest an equilibrium binding mode between a single receptor site in Cdc4 and multiple low-affinity CPD sites in Sic1.


Cell | 2004

CDK Activity Antagonizes Whi5, an Inhibitor of G1/S Transcription in Yeast

Michael Costanzo; Joy L. Nishikawa; Xiaojing Tang; Jonathan S Millman; Oliver Schub; Kevin E. Breitkreuz; Danielle Dewar; Ivan Rupeš; Brenda Andrews; Mike Tyers

Cyclin-dependent kinase (CDK) activity initiates the eukaryotic cell division cycle by turning on a suite of gene expression in late G1 phase. In metazoans, CDK-dependent phosphorylation of the retinoblastoma tumor suppressor protein (Rb) alleviates repression of E2F and thereby activates G1/S transcription. However, in yeast, an analogous G1 phase target of CDK activity has remained elusive. Here we show that the cell size regulator Whi5 inhibits G1/S transcription and that this inhibition is relieved by CDK-mediated phosphorylation. Deletion of WHI5 bypasses the requirement for upstream activators of the G1/S transcription factors SBF/MBF and thereby accelerates the G1/S transition. Whi5 is recruited to G1/S promoter elements via its interaction with SBF/MBF in vivo and in vitro. In late G1 phase, CDK-dependent phosphorylation dissociates Whi5 from SBF and drives Whi5 out of the nucleus. Elimination of CDK activity at the end of mitosis allows Whi5 to reenter the nucleus to again repress G1/S transcription. These findings harmonize G1/S control in eukaryotes.


Cell | 2007

Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination.

Xiaojing Tang; Stephen Orlicky; Zhen-Yuan Lin; Andrew Willems; Dante Neculai; Derek F. Ceccarelli; Frank Mercurio; Brian H. Shilton; Frank Sicheri; Mike Tyers

SCF ubiquitin ligases recruit substrates for degradation via F box protein adaptor subunits. WD40 repeat F box proteins, such as Cdc4 and beta-TrCP, contain a conserved dimerization motif called the D domain. Here, we report that the D domain protomers of yeast Cdc4 and human beta-TrCP form a superhelical homotypic dimer. Disruption of the D domain compromises the activity of yeast SCF(Cdc4) toward the CDK inhibitor Sic1 and other substrates. SCF(Cdc4) dimerization has little effect on the affinity for Sic1 but markedly stimulates ubiquitin conjugation. A model of the dimeric holo-SCF(Cdc4) complex based on small-angle X-ray scatter measurements reveals a suprafacial configuration, in which substrate-binding sites and E2 catalytic sites lie in the same plane with a separation of 64 A within and 102 A between each SCF monomer. This spatial variability may accommodate diverse acceptor lysine geometries in both substrates and the elongating ubiquitin chain and thereby increase catalytic efficiency.


Cell | 2011

An Allosteric Inhibitor of the Human Cdc34 Ubiquitin-Conjugating Enzyme

Derek F. Ceccarelli; Xiaojing Tang; Benoit Pelletier; Stephen Orlicky; Weilin Xie; Veronique Plantevin; Dante Neculai; Yang-Chieh Chou; Abiodun A. Ogunjimi; Abdallah Al-Hakim; Xaralabos Varelas; Joanna Koszela; Gregory A. Wasney; Masoud Vedadi; Sirano Dhe-Paganon; Sarah Cox; Shuichan Xu; Antonia Lopez-Girona; Frank Mercurio; Jeff Wrana; Daniel Durocher; Sylvain Meloche; David R. Webb; Mike Tyers; Frank Sicheri

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Nature Biotechnology | 2010

An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase

Stephen Orlicky; Xiaojing Tang; Victor Neduva; Nadine H. Elowe; Eric D. Brown; Frank Sicheri; Mike Tyers

The specificity of SCF ubiquitin ligase–mediated protein degradation is determined by F-box proteins. We identified a biplanar dicarboxylic acid compound, called SCF-I2, as an inhibitor of substrate recognition by the yeast F-box protein Cdc4 using a fluorescence polarization screen to monitor the displacement of a fluorescein-labeled phosphodegron peptide. SCF-I2 inhibits the binding and ubiquitination of full-length phosphorylated substrates by SCFCdc4. A co-crystal structure reveals that SCF-I2 inserts itself between the β-strands of blades 5 and 6 of the WD40 propeller domain of Cdc4 at a site that is 25 Å away from the substrate binding site. Long-range transmission of SCF-I2 interactions distorts the substrate binding pocket and impedes recognition of key determinants in the Cdc4 phosphodegron. Mutation of the SCF-I2 binding site abrogates its inhibitory effect and explains specificity in the allosteric inhibition mechanism. Mammalian WD40 domain proteins may exhibit similar allosteric responsiveness and hence represent an extensive class of druggable target.


Current Biology | 1999

Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E

Yisong Wang; Sonya Penfold; Xiaojing Tang; Naka Hattori; Paul Riley; J. Wade Harper; James C. Cross; Mike Tyers

The stability of many proteins is controlled by the ubiquitin proteolytic system, which recognizes specific substrates through the action of E3 ubiquitin ligases [1]. The SCFs are a recently described class of ubiquitin ligase that target a number of cell cycle regulators and other proteins for degradation in both yeast and mammalian cells [2] [3] [4] [5] [6]. Each SCF complex is composed of the core protein subunits Skp1, Rbx1 and Cul1 (known as Cdc53 in yeast), and substrate-specific adaptor subunits called F-box proteins [2] [3] [4]. To understand the physiological role of SCF complexes in mammalian cells, we generated mice carrying a deletion in the Cul1 gene. Cul1(-/-) embryos arrested around embryonic day 6.5 (E6.5) before the onset of gastrulation. In all cells of the mutant embryos, cyclin E protein, but not mRNA, was highly elevated. Outgrowths of Cul1(-/-) blastocysts had limited proliferative capacity in vitro and accumulated cyclin E in all cells. Within Cul1(-/-) blastocyst cultures, trophoblast giant cells continued to endocycle despite the elevated cyclin E levels. These results suggest that cyclin E abundance is controlled by SCF activity, possibly through SCF-dependent degradation of cyclin E.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Composite low affinity interactions dictate recognition of the cyclin-dependent kinase inhibitor Sic1 by the SCFCdc4 ubiquitin ligase

Xiaojing Tang; Stephen Orlicky; Tanja Mittag; Veronika Csizmok; Tony Pawson; Julie D. Forman-Kay; Frank Sicheri; Mike Tyers

The ubiquitin ligase SCFCdc4 (Skp1/Cul1/F-box protein) recognizes its substrate, the cyclin-dependent kinase inhibitor Sic1, in a multisite phosphorylation-dependent manner. Although short diphosphorylated peptides derived from Sic1 can bind to Cdc4 with high affinity, through systematic mutagenesis and quantitative biophysical analysis we show that individually weak, dispersed Sic1 phospho sites engage Cdc4 in a dynamic equilibrium. The affinities of individual phosphoepitopes serve to tune the overall phosphorylation site threshold needed for efficient recognition. Notably, phosphoepitope affinity for Cdc4 is dramatically weakened in the context of full-length Sic1, demonstrating the importance of regional environment on binding interactions. The multisite nature of the Sic1-Cdc4 interaction confers cooperative dependence on kinase activity for Sic1 recognition and ubiquitination under equilibrium reaction conditions. Composite dynamic interactions of low affinity sites may be a general mechanism to establish phosphorylation thresholds in biological responses.


Molecular and Cellular Biology | 2014

Structure of an SspH1-PKN1 Complex Reveals the Basis for Host Substrate Recognition and Mechanism of Activation for a Bacterial E3 Ubiquitin Ligase

Alexander F. A. Keszei; Xiaojing Tang; Craig McCormick; Elton Zeqiraj; John R. Rohde; Mike Tyers; Frank Sicheri

ABSTRACT IpaH proteins are bacterium-specific E3 enzymes that function as type three secretion system (T3SS) effectors in Salmonella, Shigella, and other Gram-negative bacteria. IpaH enzymes recruit host substrates for ubiquitination via a leucine-rich repeat (LRR) domain, which can inhibit the catalytic domain in the absence of substrate. The basis for substrate recognition and the alleviation of autoinhibition upon substrate binding is unknown. Here, we report the X-ray structure of Salmonella SspH1 in complex with human PKN1. The LRR domain of SspH1 interacts specifically with the HR1b coiled-coil subdomain of PKN1 in a manner that sterically displaces the catalytic domain from the LRR domain, thereby activating catalytic function. SspH1 catalyzes the ubiquitination and proteasome-dependent degradation of PKN1 in cells, which attenuates androgen receptor responsiveness but not NF-κB activity. These regulatory features are conserved in other IpaH-substrate interactions. Our results explain the mechanism whereby substrate recognition and enzyme autoregulation are coupled in this class of bacterial ubiquitin ligases.

Collaboration


Dive into the Xiaojing Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge