Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojuan Liu is active.

Publication


Featured researches published by Xiaojuan Liu.


Ecology | 2012

Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities

Nathan G. Swenson; David L. Erickson; Xiangcheng Mi; Norman A. Bourg; Jimena Forero-Montaña; Xue-Jun Ge; Robert W. Howe; Jeffrey K. Lake; Xiaojuan Liu; Keping Ma; Nancai Pei; Jill Thompson; María Uriarte; Amy Wolf; S. Joseph Wright; Wanhu Ye; Jinlong Zhang; Jess K. Zimmerman; W. John Kress

The study of biodiversity has tended to focus primarily on relatively information-poor measures of species diversity. Recently, many studies of local diversity (alpha diversity) have begun to use measures of functional and phylogenetic alpha diversity. Investigations into the phylogenetic and functional dissimilarity (beta diversity) of communities have been far less numerous, but these dissimilarity measures have the potential to infer the mechanisms underlying community assembly and dynamics. Here, we relate levels of phylogenetic and functional alpha diversity to levels of phylogenetic and functional beta diversity to infer the mechanism or mechanisms responsible for the assembly of tree communities in six forests located in tropical and temperate latitudes. The results show that abiotic filtering plays a role in structuring local assemblages and governing spatial turnover in community composition and that phylogenetic measures of alpha and beta diversity are not strong predictors of functional alpha and beta diversity in the forests studied.


Methods in Ecology and Evolution | 2014

Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China

Helge Bruelheide; Karin Nadrowski; Thorsten Assmann; Jürgen Bauhus; Sabine Both; François Buscot; Xiao-Yong Chen; Bing-Yang Ding; Walter Durka; Alexandra Erfmeier; Jessica L. M. Gutknecht; Dali Guo; Liang-Dong Guo; Werner Härdtle; Jin-Sheng He; Alexandra-Maria Klein; Peter Kühn; Yu Liang; Xiaojuan Liu; Stefan G. Michalski; Pascal A. Niklaus; Kequan Pei; Michael Scherer-Lorenzen; Thomas Scholten; Andreas Schuldt; Gunnar Seidler; Stefan Trogisch; Goddert von Oheimb; Erik Welk; Christian Wirth

Summary 1. Biodiversity–ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25� 8 9 25� 8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ‘ecoscape’ to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achiev


Functional Ecology | 2013

The environment and space, not phylogeny, determine trait dispersion in a subtropical forest

Xiaojuan Liu; Nathan G. Swenson; Jinlong Zhang; Keping Ma

Summary 1. A central aim of forest ecologists is to quantify the relative importance of different community assembly mechanisms in tropical and subtropical tree communities. Recent work in this field has focused on the importance of functional trait similarity and abiotic filtering. While important, none of this work has simultaneously: linked these trait dispersion patterns to the underlying abiotic environment, considered dispersal limitation and quantified the degree to which patterns of trait dispersion may be explained simply by shared ancestry. 2. Here we use data from a subtropical Chinese forest to accomplish this goal. We first examine the trait dispersion (leaf area, specific leaf area, seed mass, wood density, maximum height and five traits together) on local scales by comparing the observed trait dispersion pattern to that expected from a null model. Then we use a variance partitioning approach to examine the degree to which spatial proximity, environmental similarity or the phylogenetic dispersion of the species determine the observed trait dispersion. 3. The results show that, on local scales, trait dispersion is often non-randomly filtered. Further the widespread trait clustering observed is largely explained by the environment and space, while the phylogenetic dispersion of species in a sample explains relatively little. This result further underscores that inferring an assembly mechanism from a pattern of phylogenetic dispersion is tenuous. 4. The work is important in that it is the first to partition the variation in tree trait diversity into its spatial, environmental and phylogenetic components and that it demonstrates that functional trait data often lack enough phylogenetic signal on local scales to confidently link patterns of trait and phylogenetic dispersion. Ultimately, the findings suggest a strong role for abiotic filtering and dispersal limitation during community assembly on local spatial scales and that shared evolutionary history plays a relatively small role.


PLOS ONE | 2012

Covariation in Plant Functional Traits and Soil Fertility within Two Species-Rich Forests

Xiaojuan Liu; Nathan G. Swenson; S. Joseph Wright; Liwen Zhang; Kai Song; Yanjun Du; Jinlong Zhang; Xiangcheng Mi; Haibao Ren; Keping Ma

The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20×20 m) using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied.


Journal of Systematics and Evolution | 2013

Phylogenetic beta diversity in tropical forests: Implications for the roles of geographical and environmental distance

Jinlong Zhang; Nathan G. Swenson; Shengbin Chen; Xiaojuan Liu; Zong-Shan Li; Jihong Huang; XiangCheng Mi; Ke-Ping Ma

Various mechanistic theories of community assembly have been proposed ranging from niche‐based theory to neutral theory. Analyses of beta diversity in a phylogenetic context could provide an excellent opportunity for testing many of these hypotheses. We analyzed the patterns of phylogenetic beta diversity in tropical tree communities in Panama to test several community assembly hypotheses. In particular, the degree to which the phylogenetic dissimilarity between communities can be explained by geographical or environmental distance can yield support for stochastic or deterministic assembly processes, respectively. Therefore, we examined: (i) the existence of distance decay of phylogenetic similarity among communities and its degree of departure from that expected under a null model; and (ii) the relative importance of geographical versus environmental distance in predicting the phylogenetic dissimilarity of communities. We found evidence that the similarity in the phylogenetic composition of communities decayed with geographical distance and environmental gradients. Null model evidence showed that beta diversity in the study system was phylogenetically non‐random. Our results highlighted not only the role of local ecological mechanisms, including environmental filtering and competitive exclusion, but also biogeographical processes such as speciation, dispersal limitation, and niche evolution in structuring phylogenetic turnover. These results also highlight the importance of niche conservatism in structuring species diversity patterns.


Journal of Plant Ecology-uk | 2017

Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands

Wensheng Bu; Bernhard Schmid; Xiaojuan Liu; Ying Li; Werner Härdtle; Goddert von Oheimb; Yu Liang; Zhenkai Sun; Yuanyuan Huang; Helge Bruelheide; Keping Ma

Aims Although the net biodiversity effect (NE) can be statistically partitioned into complementarity and selection effects (CE and SE), there are different underlying mechanisms that can cause a certain partitioning. Our objective was to assess the role of resource partitioning and species interactions as two important mechanisms that can bring about CEs by interspecific and intraspecific trait variation. Methods We measured tree height of 2493 living individuals in 57 plots and specific root length (SRL) on first-order roots of 368 of these individuals across different species richness levels (1, 2, 4, 8 species) in a large-scale forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China) established in 2009. We describe the effects of resource partitioning between species by a fixed component of interspecific functional diversity (RaoQ) and further effects of species interactions by variable components of interspecific and intraspecific functional diversity (community weighted trait similarity and trait dissimilarity, CWS and CWD). Finally, we examined the relationships between biodiversity effects on stand-level tree height and functional diversity (RaoQ, CWS and CWD) in SRL using linear regression and assessed the relative importance of these three components of functional diversity in explaining the diversity effects. Important Findings Our results show that species richness significantly affected SRL in five and tree height in ten out of 16 species. A positive NE was generally brought about by a positive CE on stand-level tree height and related to high values of RaoQ and CWS in SRL. A positive CE was related to high values of all three components of root functional diversity (RaoQ, CWS and CWD). Our study suggests that both resource partitioning and species interactions are the underlying mechanisms of biodiversity effects on stand-level tree growth in subtropical forest.


Journal of Plant Ecology-uk | 2017

Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China

Zhenkai Sun; Xiaojuan Liu; Bernhard Schmid; Helge Bruelheide; Wensheng Bu; Keping Ma

Aims: Fine roots play an important role in the biogeochemical cycles of terrestrial ecosystems and are vital for understanding forest ecosystem functioning and services. Higher plant species diversity has been largely reported to increase aboveground community biomass, but how biodiversity affects fine-root production and the related mechanisms in forests remain unclear. In this study, we aim to answer two questions: (i) does fine-root production increase with tree species richness? (ii) Can this effect be explained by niche complementarity among species? Methods: We analyzed data from a large forest biodiversity experiment (BEF-China) with 5-year-old trees. Fine-root growth was measured as standing biomass and annual fine-root regrowth was estimated using ingrowth cores. Moreover, relative yield was calculated to test whether over- or under-yielding occurred when mixtures were compared with the average monoculture of the species included in the mixtures. We calculated functional diversity for fine-root (≤2mm in diameter) traits by Rao’s quadratic entropy index for each species mixture. The effects of manipulated tree species richness and identity on fine-root traits were analyzed with linear mixed-effects models. Mixed models were also used to test the relationships between tree species richness and fine-root standing biomass, annual regrowth and vertical heterogeneity. Important Findings: Fine roots of more than one species were found in half of the soil cores in mixtures indicating that belowground interactions in these young forest stands occurred much earlier than canopy closure. We found significant differences among species in fine-root traits such as diameter and specific root length (SRL), which suggested different resource-use strategies and niche partitioning among species. Mean fine-root diameter of species ranged from 0.31 to 0.74mm, mean SRL ranged from 12.43 m·g−1 to 70.22 m·g−1 and mean vertical distribution index β ranged from 0.68 to 0.93. There was a significant positive relationship between species richness and the evenness of the vertical distribution of fine-root standing biomass. Moreover, marginally significant positive relationships existed between species richness and standing biomass as well as annual regrowth of fine roots. Relative yields and Rao’s quadratic entropy index were both not significantly affected by species richness. However, the relative yield of fine-root standing biomass was marginally correlated with Rao’s quadratic entropy index, implying that belowground niche complementarity between species does contribute to diversity effects. In conclusion, our study showed positive effects of species richness on the filling of soil volume by fine roots in the studied experimental forest communities. This has positive effects on fine-root standing biomass and may also lead to increased aboveground biomass.


Ecology | 2016

Linking individual‐level functional traits to tree growth in a subtropical forest

Xiaojuan Liu; Nathan G. Swenson; Dunmei Lin; Xiangcheng Mi; María Natalia Umaña; Bernhard Schmid; Keping Ma

Forging strong links between traits and performance is essential for understanding and predicting community assembly and dynamics. Functional trait analyses of trees that have correlated single-trait values with measures of performance such as growth and mortality have generally found weak relationships. A reason for these weak relationships is the failure to use individual-level trait data while simultaneously putting that data into the context of the abiotic setting, neighborhood composition, and the remaining axes constituting the overall phenotype. Here, utilizing detailed growth and trait data for 59 species of trees in a subtropical forest, we demonstrate that the individual-level functional trait values are strongly related to individual growth rates, and that the strength of these relationships critically depends on the context of that individual. We argue that our understanding of trait-performance relationships can be greatly improved with individual-level data so long as that data is put into the proper context.


PLOS ONE | 2014

Tree species traits but not diversity mitigate stem breakage in a subtropical forest following a rare and extreme ice storm

Karin Nadrowski; Katherina A. Pietsch; Martin Baruffol; Sabine Both; Jessica L. M. Gutknecht; Helge Bruelheide; Heike Heklau; Anja Kahl; Tiemo Kahl; Pascal A. Niklaus; Wenzel Kröber; Xiaojuan Liu; Xiangcheng Mi; Stefan G. Michalski; Goddert von Oheimb; Oliver Purschke; Bernhard Schmid; Teng Fang; Erik Welk; Christian Wirth

Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level.


Journal of Ecology | 2017

The role of transcriptomes linked with responses to light environment on seedling mortality in a subtropical forest, China

Baocai Han; María Natalia Umaña; Xiangcheng Mi; Xiaojuan Liu; Lei Chen; Yunquan Wang; Yu Liang; Wei Wei; Keping Ma

Summary Differences in seedling survival in trees have a lasting imprint on seedling, juvenile and adult community structure. Identifying the drivers of these differences, therefore, is a critical research objective that ultimately requires knowledge regarding how organismal function interacts with the local environment to influence survival rates. In tree communities, differences in light use strategies are frequently invoked to explain differences in seedling demographic performance through growth and survival trade-offs. For example, shade-tolerant species grow slowly and have higher survival rates, whereas shade-intolerant species grow quickly but have lower survival rates. Thus, functional traits related to photosynthesis should be strong predictors of demographic rates, but results in the literature are mixed indicating that additional or alternative information regarding organismal function should be considered. Here, we provide a community-wide inventory of transcriptomes in a subtropical tree community. This information is utilized to determine the degree to which species share homologous genes related to gene ontologies for light use and harvesting. These species similarities are used in neighbourhood generalized linear mixed-effects models of seedling survival that evaluated seedling survival as a function of the transcriptomic, functional trait and phylogenetic composition of the local neighbourhood. The results show neighbourhood similarity in three of the 15 gene ontologies evaluated are significantly related to survival rates based on neighbourhood composition. For two of these ontologies, survival rates increase when neighbours are similar in their gene tree composition indicating the importance of abiotic filtering and performance hierarchies. Synthesis. The present work takes a novel approach by sequencing the transcriptomes of naturally co-occurring tree species in a subtropical forest in China. The results show that the transcriptomic similarity of species is a significant predictor of differential survival. The study demonstrates that exploring the functional genomic similarity of non-model species in nature has the potential to increase the breadth and depth of our understanding of how gene function influences species co-occurrence and population dynamics in communities.

Collaboration


Dive into the Xiaojuan Liu's collaboration.

Top Co-Authors

Avatar

Keping Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangcheng Mi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Goddert von Oheimb

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge