Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaojuan Tan is active.

Publication


Featured researches published by Xiaojuan Tan.


Virology Journal | 2010

An emerging recombinant human enterovirus 71 responsible for the 2008 outbreak of hand foot and mouth disease in Fuyang city of China.

Yan Zhang; Zhen Zhu; Weizhong Yang; Jun Ren; Xiaojuan Tan; Wang Y; Naiying Mao; Songtao Xu; Shuangli Zhu; Aili Cui; Yong Zhang; Dongmei Yan; Qun Li; Xiao-Ping Dong; Jing Zhang; Yueping Zhao; Junfeng Wan; Zijian Feng; Junling Sun; Shiwen Wang; Dexin Li; Wenbo Xu

Hand, foot and mouth disease (HFMD), a common contagious disease that usually affects children, is normally mild but can have life-threatening manifestations. It can be caused by enteroviruses, particularly Coxsackieviruses and human enterovirus 71 (HEV71) with highly variable clinical manifestations. In the spring of 2008, a large, unprecedented HFMD outbreak in Fuyang city of Anhui province in the central part of southeastern China resulted in a high aggregation of fatal cases. In this study, epidemiologic and clinical investigations, laboratory testing, and genetic analyses were performed to identify the causal pathogen of the outbreak. Of the 6,049 cases reported between 1 March and 9 May of 2008, 3023 (50%) were hospitalized, 353 (5.8%) were severe and 22 (0.36%) were fatal. HEV71 was confirmed as the etiological pathogen of the outbreak. Phylogenetic analyses of entire VP1 capsid protein sequence of 45 Fuyang HEV71 isolates showed that they belong to C4a cluster of the C4 subgenotype. In addition, genetic recombinations were found in the 3D region (RNA-dependent RNA polymerase, a major component of the viral replication complex of the genome) between the Fuyang HEV71 strain and Coxsackievirus A16 (CV-A16), resulting in a recombination virus. In conclusion, an emerging recombinant HEV71 was responsible for the HFMD outbreak in Fuyang City of China, 2008.


Journal of Clinical Virology | 2009

An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China.

Yong Zhang; Xiaojuan Tan; Haiyan Wang; Dongmei Yan; Shuangli Zhu; Dongyan Wang; Feng Ji; Wang X; Yong-Jun Gao; Li Chen; Hongqiu An; Dexin Li; Shiwen Wang; Aiqiang Xu; Zi-Jun Wang; Wenbo Xu

BACKGROUND An outbreak of hand, foot, and mouth disease (HFMD) included 1149 people in Linyi City, Shandong Province, China, in 2007: three children died. OBJECTIVES To characterize the pathogens responsible for this outbreak and to analyze their genetic features. STUDY DESIGN A total of 233 clinical specimens were collected from 105 hospitalized patients, including 11 patients with severe HFMD. Virological investigations (direct RT-PCR, viral isolation and molecular identification) and phylogenetic analysis were performed. RESULTS Human enterovirus 71 (HEV71) was the main pathogen that caused this outbreak, based on clinical manifestations, epidemiological data, and laboratory results. Phylogenetic analysis indicated that the Shandong HEV71 isolates belonged to 3 lineages in subgenotype C4. Subgenotype C4 could be further divided into two clusters (C4a and C4b), which corresponded to two time periods. Cluster C4a HEV71 has been the predominant virus circulating in mainland China in the past 5 years. CONCLUSIONS The 2007 HFMD outbreak was mainly caused by HEV71 subgenotype C4 with 3 transmission chains. This virus has been continuously circulating in China since 1998. The Shandong strains co-evolved with isolates from other provinces in mainland China and neighboring countries.


The New England Journal of Medicine | 2014

Efficacy, Safety, and Immunogenicity of an Enterovirus 71 Vaccine in China

Fengcai Zhu; Wenbo Xu; Jielai Xia; Zhenglun Liang; Yan Liu; Xuefeng Zhang; Xiaojuan Tan; Ling Wang; Qunying Mao; Junyu Wu; Yue-Mei Hu; Tianjiao Ji; Lifei Song; Qi Liang; Baomin Zhang; Qiang Gao; Jing-Xin Li; Shenyu Wang; Yuansheng Hu; Shanru Gu; Jianhua Zhang; Genhong Yao; Jianxiang Gu; Xushan Wang; Yuchun Zhou; Changbiao Chen; Minglei Zhang; Minquan Cao; Junzhi Wang; Hua Wang

BACKGROUND Enterovirus 71 (EV71) is one of the major causative agents of outbreaks of hand, foot, and mouth disease or herpangina worldwide. This phase 3 trial was designed to evaluate the efficacy, safety, and immunogenicity of an EV71 vaccine. METHODS We conducted a randomized, double-blind, placebo-controlled, multicenter trial in which 10,007 healthy infants and young children (6 to 35 months of age) were randomly assigned in a 1:1 ratio to receive two intramuscular doses of either EV71 vaccine or placebo, 28 days apart. The surveillance period was 12 months. The primary end point was the occurrence of EV71-associated hand, foot, and mouth disease or herpangina. RESULTS During the 12-month surveillance period, EV71-associated disease was identified in 0.3% of vaccine recipients (13 of 5041 children) and 2.1% of placebo recipients (106 of 5028 children) in the intention-to-treat cohort. The vaccine efficacy against EV71-associated hand, foot, and mouth disease or herpangina was 94.8% (95% confidence interval [CI], 87.2 to 97.9; P<0.001) in this cohort. Vaccine efficacies against EV71-associated hospitalization (0 cases vs. 24 cases) and hand, foot, and mouth disease with neurologic complications (0 cases vs. 8 cases) were both 100% (95% CI, 83.7 to 100 and 42.6 to 100, respectively). Serious adverse events occurred in 111 of 5044 children in the vaccine group (2.2%) and 131 of 5033 children in the placebo group (2.6%). In the immunogenicity subgroup (1291 children), an anti-EV71 immune response was elicited by the two-dose vaccine series in 98.8% of participants at day 56. An anti-EV71 neutralizing antibody titer of 1:16 was associated with protection against EV71-associated hand, foot, and mouth disease or herpangina. CONCLUSIONS The EV71 vaccine provided protection against EV71-associated hand, foot, and mouth disease or herpangina in infants and young children. (Funded by Sinovac Biotech; ClinicalTrials.gov number, NCT01507857.).


PLOS ONE | 2011

The persistent circulation of enterovirus 71 in People's Republic of China: causing emerging nationwide epidemics since 2008.

Xiaojuan Tan; Xueyong Huang; Shuangli Zhu; Hui Chen; Qiuli Yu; Haiyan Wang; Xixiang Huo; Jianhui Zhou; Yan Wu; Dongmei Yan; Yong Zhang; Dongyan Wang; Aili Cui; Hongqiu An; Wenbo Xu

Emerging epidemics of hand-foot-and-mouth disease (HFMD) associated with enterovirus 71 (EV71) has become a serious concern in mainland China. It caused 126 and 353 fatalities in 2008 and 2009, respectively. The epidemiologic and pathogenic data of the outbreak collected from national laboratory network and notifiable disease surveillance system. To understand the virological evolution of this emerging outbreak, 326 VP1 gene sequences of EV71 detected in China from 1987 to 2009 were collected for genetic analyses. Evidence from both traditional and molecular epidemiology confirmed that the recent HFMD outbreak was an emerging one caused by EV71 of subgenotype C4. This emerging HFMD outbreak is associated with EV71 of subgenotype C4, circulating persistently in mainland China since 1998, but not attributed to the importation of new genotype. Originating from 1992, subgenotype C4 has been the predominant genotype since 1998 in mainland China, with an evolutionary rate of 4.6∼4.8×10−3 nucleotide substitutions/site/year. The phylogenetic analysis revealed that the majority of the virus during this epidemic was the most recent descendant of subgenotype C4 (clade C4a). It suggests that the evolution might be one of the potential reasons for this native virus to cause the emerging outbreak in China. However, strong negative selective pressure on VP1 protein of EV71 suggested that immune escape might not be the evolving strategy of EV71, predicting a light future for vaccine development. Nonetheless, long-term antigenic and genetic surveillance is still necessary for further understanding.


Virology Journal | 2010

Retrospective seroepidemiology indicated that human enterovirus 71 and coxsackievirus A16 circulated wildly in central and southern China before large-scale outbreaks from 2008

Zhen Zhu; Shuangli Zhu; Xuebin Guo; Jitao Wang; Dongyan Wang; Dongmei Yan; Xiaojuan Tan; Liuying Tang; Hui Zhu; Zhaohui Yang; Xiaohong Jiang; Yixin Ji; Yong Zhang; Wenbo Xu

BackgroundLarge nationwide outbreaks of hand, foot, and mouth disease (HFMD) occurred in China from 2008; most of the cases were in children under 5 years. This study aims to identify the situation of natural human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) infections in children before 2008 in China.ResultsRetrospective seroepidemiologic studies of HEV71 and CVA16 were performed with 900 serum samples collected from children ≤5 years of age in 2005. The samples were collected from 6 different geographical areas (Anhui, Guangdong, Hunan, Xinjiang, Yunnan, and Heilongjiang provinces) in mainland China. Of the 900 samples, 288 were positive for HEV71; the total positive rate was 32.0% and the geometric mean titer (GMT) was 1:8.5. Guangdong (43.7% and 1:10.8), Xinjiang (45.4% and 1:11.1), and Yunnan (43.4% and 1:12.0) provinces had relatively high rates of infection, while Heilongjiang province (8.1% and 1:4.9) had the lowest rate of infection. On the other hand, 390 samples were positive for CVA16; the total positive rate was 43.4% and the GMT was 1:9.5. Anhui (62.2% and 1:16.0) and Hunan (61.1% and 1:23.1) had relatively high rates, while Heilongjiang (8.0% and 1:4.6) had the lowest rate. Although there is a geographical difference in HEV71 and CVA16 infections, low neutralizing antibody positive rate and titer of both viruses were found in all 6 provinces.ConclusionsThis report confirmed that HEV71 and CVA16 had wildly circulated in a couple provinces in China before the large-scale outbreaks from 2008. This finding also suggests that public health measures to control the spread of HEV71 and CVA16 should be devised according to the different regional characteristics.


PLOS ONE | 2011

Emergence and Transmission Pathways of Rapidly Evolving Evolutionary Branch C4a Strains of Human Enterovirus 71 in the Central Plain of China

Yong Zhang; Jitao Wang; Wanshen Guo; Haiyan Wang; Shuangli Zhu; Dongyan Wang; Ruyin Bai; Xingle Li; Dongmei Yan; Huiling Wang; Yan Zhang; Zhen Zhu; Xiaojuan Tan; Hongqiu An; Aiqiang Xu; Wenbo Xu

Background Large-scale outbreaks of hand, foot, and mouth disease (HFMD) occurred repeatedly in the Central Plain of China (Shandong, Anhui, and Henan provinces) from 2007 until now. These epidemics have increased in size and severity each year and are a major public health concern in mainland China. Principal Findings Phylogenetic analysis was performed and a Bayesian Markov chain Monte Carlo tree was constructed based on the complete VP1 sequences of HEV71 isolates. These analyses showed that the HFMD epidemic in the Central Plain of China was caused by at least 5 chains of HEV71 transmission and that the virus continued to circulate and evolve over the winter seasons between outbreaks. Between 1998 and 2010, there were 2 stages of HEV71 circulation in mainland China, with a shift from evolutionary branch C4b to C4a in 2003–2004. The evolution rate of C4a HEV71 was 4.99×10-3 substitutions per site per year, faster than the mean of all HEV71 genotypes. The most recent common ancestor estimates for the Chinese clusters dated to October 1994 and November 1993 for the C4a and C4b evolutionary branches, respectively. Compared with all C4a HEV71 strains, a nucleotide substitution in all C4b HEV71 genome (A to C reversion at nt2503 in the VP1 coding region, which caused amino acid substitution of VP1–10: Gln to His) had reverted. Conclusions The data suggest that C4a HEV71 strains introduced into the Central Plain of China are responsible for the recent outbreaks. The relationships among HEV71 isolates determined from the combined sequence and epidemiological data reveal the underlying seasonal dynamics of HEV71 circulation. At least 5 HEV71 lineages circulated in the Central Plain of China from 2007 to 2009, and the Shandong and Anhui lineages were found to have passed through a genetic bottleneck during the low-transmission winter season.


PLOS ONE | 2013

Complete Genome Analysis of the C4 Subgenotype Strains of Enterovirus 71: Predominant Recombination C4 Viruses Persistently Circulating in China for 14 Years

Yan Zhang; Xiaojuan Tan; Aili Cui; Naiying Mao; Songtao Xu; Zhen Zhu; Jianhui Zhou; Jing Shi; Yueping Zhao; Wang X; Xueyong Huang; Shuangli Zhu; Yong Zhang; Wei Tang; Hua Ling; Wenbo Xu

Genetic recombination is a well-known phenomenon for enteroviruses. To investigate the genetic characterization and the potential recombination of enterovirus 71 (EV71) circulating in China, we determined the 16 complete genome sequences of EV71 isolated from Hand Foot Mouth Disease (HFMD) patients during the large scale outbreak and non-outbreak years since 1998 in China. The full length genome sequences of 16 Chinese EV71 in present study were aligned with 186 genome sequences of EV71 available from GenBank, including 104 China mainland and 82 international sequences, covering the time period of 1970–2011. The oldest strains of each subgenotype of EV71 and prototype strains of HEV-A were included to do the phylogenetic and Simplot analysis. Phylogenetic analysis indicated that all Chinese strains were clustered into C4 subgenotype of EV71, except for HuB/CHN/2009 clustered into A and Xiamen/CHN/2009 clustered into B5 subgenotype. Most of C4 EV71 were clustered into 2 predominant evolutionary branches: C4b and C4a evolutionary brunches. Our comprehensive recombination analysis showed the evidence of genome recombination of subgenotype C4 (including C4a and C4b) sequences between structural genes from genotype C EV71 and non-structural genes from the prototype strains of CAV16, 14 and 4, but the evidence of intratypic recombination between C4 strains and B subgenotype was not enough strong. This intertypic recombination C4 viruses were first seen in 1998 and became the predominant endemic viruses circulating in China mainland for at least 14 years. A shift between C4a and C4b evolutionary brunches of C4 recombination viruses were observed, and C4a viruses have been associated with large scale nationwide HFMD outbreak with higher morbidity and mortality since 2007.


Virology Journal | 2011

Adenovirus serotype 7 associated with a severe lower respiratory tract disease outbreak in infants in Shaanxi Province, China.

Liuying Tang; Li Wang; Xiaojuan Tan; Wenbo Xu

BackgroundPneumonia caused by adenovirus infection is usually severe especially with adenovirus serotype 7 commonly associated with lower respiratory tract disease outbreaks. We reported an outbreak of 70 cases of severe pneumonia with one death of infants in Shaanxi Province, China. Sampling showed adenovirus 7 (Ad7) as the primary pathogen with some co-infections.ResultsTwo strains of adenovirus and two strains of enterovirus were isolated, the 21 pharynx swabs showed 14 positive amplifications for adenovirus; three co-infections with respiratory syncytial virus, two positive for rhinovirus, one positive for parainfluenza 3, and four negative. Adenovirus typing showed nine of the nine adenovirus positive samples were HAdV-7, three were HAdV-3 and two were too weak to perform sequencing. The entire hexon gene of adenovirus was sequenced and analyzed for the two adenovirus serotype 7 isolates, showing the nucleic acid homology was 99.8% between the two strains and 99.5% compared to the reference strain HAdV-7 (GenBank accession number AY769946). For the 21 acute phase serum samples from the 21 patients, six samples had positives results for ELISA detection of HAdV IgA, and the neutralization titers of the convalescent-phase samples were four times higher than those of the acute-phase samples in nine pairs.ConclusionsWe concluded adenovirus was the viral pathogen, primarily HAdV-7, with some co-infections responsible for the outbreak. This is the first report of an infant pneumonia outbreak caused by adenovirus serotype 7 in Shaanxi Province, China.


PLOS ONE | 2013

The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD.

Aili Cui; Changping Xu; Xiaojuan Tan; Yan Zhang; Zhen Zhu; Naiying Mao; Yiyu Lu; Wenbo Xu

Large-scale Hand, Foot, and Mouth Disease (HFMD) outbreaks have frequently occurred in China since 2008, affecting more than one million children and causing several hundred children deaths every year. The pathogens of HFMD are mainly human enteroviruses (HEVs). Among them, human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) are the most common pathogens of HFMD. However, other HEVs could also cause HFMD. To rapidly detect HEV71 and CVA16, and ensure detection of all HEVs causing HFMD, two real-time hybridization probe-based RT-PCR assays were developed in this study. One is a multiplex real-time RT-PCR assay, which was developed to detect and differentiate HEV71 specifically from CVA16 directly from clinical specimens within 1–2 h, and the other is a broad-spectrum real-time RT-PCR assay, which targeted almost all HEVs. The experiments confirmed that the two assays have high sensitivity and specificity, and the sensitivity was up to 0.1 TCID50/ml for detection of HEVs, HEV71, and CVA16, respectively. A total of 213 clinical specimens were simultaneously detected by three kinds of assays, including the two real-time RT-PCR assays, direct conventional RT-PCR assay, and virus isolation assay on human rhabdomyosarcoma cells (RD cells). The total positive rate of both HEV71 and CVA16 was 69.48% with real-time RT-PCR assay, 47.42% with RT-PCR assay, and 34.58% with virus isolation assay. One HFMD clinical specimen was positive for HEV, but negative for HEV71 or CVA16, which was identified as Echovirus 11 (Echo11) by virus isolation, RT-PCR, and sequencing for the VP1 gene. The two real-time RT-PCR assays had been applied in 31 provincial HFMD labs to detect the pathogens of HFMD, which has contributed to the rapid identification of the pathogens in the early stages of HFMD outbreaks, and helped to clarify the etiologic agents of HFMD in China.


PLOS ONE | 2013

Molecular Epidemiology of Coxsackievirus A16: Intratype and Prevalent Intertype Recombination Identified

Xiangpeng Chen; Xiaojuan Tan; Jing Li; Yu Jin; Liming Gong; Mei Hong; Yonglin Shi; Shuangli Zhu; Baomin Zhang; Shuang Zhang; Yong Zhang; Naiying Mao; Wenbo Xu

Coxsackievirus A16 (CVA16) is responsible for nearly 50% of all the confirmed hand, foot, and mouth disease (HFMD) cases in mainland China, sometimes it could also cause severe complications, and even death. To clarify the genetic characteristics and the epidemic patterns of CVA16 in mainland China, comprehensive bioinfomatics analyses were performed by using 35 CVA16 whole genome sequences from 1998 to 2011, 593 complete CVA16 VP1 sequences from 1981 to 2011, and prototype strains of human enterovirus species A (EV-A). Analysis on complete VP1 sequences revealed that subgenotypes B1a and B1b were prevalent strains and have been co-circulating in many Asian countries since 2000, especially in mainland China for at least 13 years. While the prevalence of subgenotype B1c (totally 20 strains) was much limited, only found in Malaysia from 2005 to 2007 and in France in 2010. Genotype B2 only caused epidemic in Japan and Malaysia from 1981 to 2000. Both subgenotypes B1a and B1b were potential recombinant viruses containing sequences from other EV-A donors in the 5’-untranslated region and P2, P3 non-structural protein encoding regions.

Collaboration


Dive into the Xiaojuan Tan's collaboration.

Top Co-Authors

Avatar

Wenbo Xu

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Shuangli Zhu

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yong Zhang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Dongmei Yan

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Zhen Zhu

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Aili Cui

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Baomin Zhang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Dongyan Wang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Hongqiu An

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yan Zhang

Chinese Center for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge