Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaokang Li is active.

Publication


Featured researches published by Xiaokang Li.


Biomaterials | 2002

Properties and biocompatibility of chitosan films modified by blending with PEG.

Mao-Hua Zhang; Xiaokang Li; Yan Dao Gong; Nanming Zhao; Xuehui Zhang

Chitosan (beta-1,4-D-glucosamine), a polysaccharide with excellent biological properties, has been widely used in biomedical fields, but many barriers still exist to its broader usage due to its chemical and physical limitations. Further work is needed to improve these properties, but changes of the chemical and physical properties will influence its biocompatibility, so the biological attribute of modified chitosan must be evaluated. In this study, the biocompatibility of chitosan modified by several methods was carefully evaluated at the cellular and protein levels using different physical and biological methods. The results provide a theoretical basis for screening biomaterials. We studied the properties of five kinds of materials made by blending chitosan with different types of polyethylene glycol (PEG). The properties included physical and chemical properties, such as mechanical strength, static contact angle, spectroscopy, thermodynamic attributes and so on. The mechanical properties were slightly improved with the proper amount of PEG, but the improvement was not obvious and was destroyed by the wrong proportion of PEG. Cultures of the cells and amounts and structures of the adsorbed proteins on different materials showed that the PEG effectively improved the biocompatibility of the materials. The PEG enhanced the protein adsorption, cell adhesion, growth and proliferation, but the effects were impaired by excessive PEG. The experiments also demonstrated that the optimum PEG concentration helped to maintain the natural structure of the protein adsorbed on the materials and that maintaining the natural structure benefited cell growth. Analysis of the results based on the intramolecular and intermolecular interaction forces leads to a basic theory for the modification of biomaterials.


Biomaterials | 2015

Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration.

Yang Zeng; Chun Chen; Wei Liu; Qinyouen Fu; Zhihua Han; Yaqian Li; Siyu Feng; Xiaokang Li; Chunxiao Qi; Jianhong Wu; Deli Wang; Christopher Corbett; Bp Chan; Dike Ruan; Yanan Du

In situ crosslinked thermo-responsive hydrogel applied for minimally invasive treatment of intervertebral disc degeneration (IVDD) may not prevent extrusion of cell suspension from injection site due to high internal pressure of intervertebral disc (IVD), causing treatment failure or osteophyte formation. In this study, mesenchymal stromal cells (MSCs) were encapsulated in alginate precursor and loaded into previously developed macroporous PGEDA-derived microcryogels (PMs) to form three-dimensional (3D) microscale cellular niches, enabling non-thermo-responsive alginate hydrogel to be injectable. The PMs reinforced alginate hydrogel showed superior elasticity compared to alginate hydrogel alone and could well protect encapsulated cells through injection. Chondrogenic committed MSCs in the injectable microniches expressed higher level of nucleus pulposus (NP) cell markers compared to 2D cultured cells. In an ex vivo organ culture model, injection of MSCs-laden PMs into NP tissue prevented cell leakage, improved cell retention and survival compared to free cell injection. In canine IVDD models, alleviated degeneration was observed in MSCs-laden PMs treated group after six months which was superior to other treated groups. Our results provide in-depth demonstration of injectable alginate hydrogel reinforced by PMs as a leak-proof cell delivery system for augmented regenerative therapy of IVDD in canine models.


Acta Biomaterialia | 2014

Microcryogels as injectable 3-D cellular microniches for site-directed and augmented cell delivery

Wei Liu; Yaqian Li; Yang Zeng; Xinyong Zhang; Jingyu Wang; Liping Xie; Xiaokang Li; Yanan Du

The success of cell therapy for tissue repair and regeneration demands efficient and reliable cell delivery methods. Here we established a novel microengineered cryogel (microcryogel) array chip containing microcryogels with predefined size and shape as injectable cell delivery vehicles. The microscale macroporous cryogels enabled automatic and homogeneous loading of tailored cellular niches (e.g. cells, matrices, bioactive factors) and could be easily harvested from the ready-to-use array chip. In contrast to microscale hydrogels, microcryogels exhibited excellent elasticity and could retain their shape and integrity after injection through the microsyringe routinely used for cell therapy. Human mesenchymal stromal cells loaded within microcryogels could be shielded from the mechanical insult and necrosis caused by during direct cell injection. After subcutaneous injection to the mice, cell-loaded microcryogels exhibited concentrated localization and enhanced retention at the injection site compared to dissociated cells. To demonstrate the potential therapeutic application for ischemic diseases, site-directed induction of angiogenesis was achieved subcutaneously in mice 2weeks after injection of NIH/3T3 fibroblast-loaded microcryogels, indicating long-term engraftment, accumulative paracrine stimulation and augmented host tissue integration. Our results convincingly showed the great promise of microcryogels as 3-D cellular microniches and injectable cell delivery vehicles to tackle major challenges faced by cell therapy-based regenerative medicine including shear-induced damages, uncontrolled localization, poor retention, limited cellular survival and functionalities in vivo.


Biofabrication | 2014

Microengineered in vitro model of cardiac fibrosis through modulating myofibroblast mechanotransduction.

Hui Zhao; Xiaokang Li; Shan Zhao; Yang Zeng; Long Zhao; Haiyan Ding; Wei Sun; Yanan Du

Cardiac fibrosis greatly impairs normal heart function post infarction and there is no effective anti-fibrotic drug developed at present. The current therapies for cardiac infarction mainly take effect by eliminating occlusion in coronary artery by thrombolysis drugs, vascular stent grafting or heart bypass operation, which are capable to provide sufficient blood flow for intact myocardium yet showed subtle efficacy in ameliorating fibrosis condition. The advances of in vitro cell/tissue models open new avenues for drug assessment due to the low cost, good controllability and availability as well as the convenience for operation as compared to the animal models. To our knowledge, no proper biomimetic in vitro cardiac fibrosis model has been reported yet. Here we engineered an in vitro cardiac fibrosis model using heart-derived fibroblasts, and the fibrogenesis was recapitulated by patterning the substrate rigidity which mimicked the mechanical heterogeneity of myocardium post-infarction. Various biomarkers for cardiac fibrosis were assayed to validate the biomimicry of the engineered platform. Subsequent addition of Rho-associated protein kinase (ROCK) pathway inhibitor reduced the ratio of myofibroblasts, indicating the feasibility of applying this platform in screening anti-fibrosis drugs.


Small | 2014

Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation

Rui Yao; Jingyu Wang; Xiaokang Li; Da Jung Jung; Hao Qi; Keh Kooi Kee; Yanan Du

Directed differentiation of human embryonic stem cells (hESCs) towards hepatocyte-like cells on planar tissue culture plates has been extensively investigated with great promise to provide alternative cell sources for drug metabolism/toxicity testing. Recently, hepatic differentiation of hESCs in 3D configuration with better mimicry of embryonic liver development represents incremental efforts to improve the differentiation efficiency and cellular maturation. However, most of the present 3D differentiation configurations involved interruptive operations during the multi-staged differentiation process, which might impose unwanted influence on cellular differentiation. Most of the current researches resulted in generation of hepatocytes with high expression of AFP, which is minimally expressed in primary hepatocytes. Here, off-the-shelf micro-stencil arrays are developed to generate adherent multilayered colonies composed of hESCs-derived cells. Uninterrupted cellular differentiation and proliferation is achieved to recapitulate the continuous and multi-stage liver development. Compared with conventional 2D format, the micro-scaled multilayered colonies with uniform and defined sizes constrained within the microwells are composed of more homogenous and mature hepatocyte-like cells with significantly lowered AFP expression and elevated hepatic functions. The multilayered colonies as novel 3D configuration for hepatic differentiation of hESCs represent a significant step toward efficient generation of functional hepatocytes for regenerative medicine and drug discovery.


Biomacromolecules | 2014

Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging.

Shan Zhao; Zhiyuan Shen; Jingyu Wang; Xiaokang Li; Yang Zeng; Bingjie Wang; Yonghong He; Yanan Du

Glycerol is among the most commonly used optical clearing agents for tissues clearance largely due to refractive index (RI) matching between glycerol and the submerged tissues. Here we applied glycerol as structure modifier at both macroscopic (as porogen) and nanoscopic (as nanostructure ameliorant) scales to fabricate transparent porous scaffolds made from poly(ethylene glycol) (PEG) as well as other widely used biomaterials (e.g., PLGA, PA, or gelatin), whose nanostructures, in the scale of light wavelength, dominantly improved the optical transmittance of the scaffolds even when immersed in RI mismatched medium (e.g., culture medium or water). We further exploited the clearing mechanisms based on Mie scattering theory, illustrating that conformational changes of polymer chains induced by solvent effects of glycerol enhanced the anisotropy (i.e., directional alignment) of the nanostructures, leading to reduced crystallinity and scattering of the resulted PEG scaffolds. Our findings represent the first and systematic demonstration with both experimental and theoretical evidence in effectively clearing porous polymeric scaffolds by mechanisms other than RI matching, which could tackle the limitations of current optical imaging of cells cultured within three-dimensional (3D) opaque porous scaffolds, such as poor visibility, low spatial resolution, and small penetration depth.


Protein & Cell | 2015

Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis

Xiaokang Li; Hui Zhao; Chunxiao Qi; Yang Zeng; Feng Xu; Yanan Du

ABSTRACTThe onset of cardiac fibrosis post myocardial infarction greatly impairs the function of heart. Recent advances of cell transplantation showed great benefits to restore myocardial function, among which the mesenchymal stem cells (MSCs) has gained much attention. However, the underlying cellular mechanisms of MSC therapy are still not fully understood. Although paracrine effects of MSCs on residual cardiomyocytes have been discussed, the amelioration of fibrosis was rarely studied as the hostile environment cannot support the survival of most cell populations and impairs the diffusion of soluble factors. Here in order to decipher the potential mechanism of MSC therapy for cardiac fibrosis, we investigated the interplay between MSCs and cardiac myofibroblasts (mFBs) using interactive co-culture method, with comparison to paracrine approaches, namely treatment by MSC conditioned medium and gap co-culture method. Various fibrotic features of mFBs were analyzed and the most prominent anti-fibrosis effects were always obtained using direct co-culture that allowed cell-to-cell contacts. Hepatocyte growth factor (HGF), a well-known anti-fibrosis factor, was demonstrated to be a major contributor for MSCs’ anti-fibrosis function. Moreover, physical contacts and tube-like structures between MSCs and mFBs were observed by live cell imaging and TEM which demonstrate the direct cellular interactions.


Journal of Biomedical Materials Research Part B | 2017

Preconditioning of mesenchymal stromal cells toward nucleus pulposus-like cells by microcryogels-based 3D cell culture and syringe-based pressure loading system.

Yang Zeng; Siyu Feng; Wei Liu; Qinyouen Fu; Yaqian Li; Xiaokang Li; Chun Chen; Chenyu Huang; Zigang Ge; Yanan Du

To precondition mesenchymal stromal/stem cells (MSCs) with mechanical stimulation may enhance cell survival and functions following implantation in load bearing environment such as nucleus pulposus (NP) in intervertebral disc (IVD). In this study, preconditioning of MSCs toward NP-like cells was achieved in previously developed poly (ethylene glycol) diacrylate (PEGDA) microcryogels (PMs) within a syringe-based three-dimensional (3D) culture system which provided a facile and cost-effective pressure loading approach. PMs loaded with alginate and MSCs could be incubated in a sealable syringe which could be air-compressed to apply pressure loading through a programmable syringe pump. Expression levels of chondrogenic marker genes SOX9, COL II, and ACAN were significantly upregulated in MSCs when pressure loading of 0.2 MPa or 0.8 MPa was implemented. Expression levels of COL I and COL X were downregulated when pressure loading was applied. In a nude mouse model, MSCs loaded in PMs mechanically stimulated for three days were subcutaneously injected using the same culture syringe. Three weeks postinjection, more proteoglycans (PGs) were deposited and more SOX9 and COL II but less COL I and COL X were stained in 0.2 MPa group. Furthermore, injectable MSCs-loaded PMs were utilized in an ex vivo rabbit IVD organ culture model that demonstrated the leak-proof function and enhanced cell retention of PMs assisted cell delivery to a load bearing environment for potential NP regeneration. This microcryogels-based 3D cell culture and syringe-based pressure loading system represents a novel method for 3D cell culture with mechanical stimulation for better function.


Lab on a Chip | 2014

Micro-scaffold array chip for upgrading cell-based high-throughput drug testing to 3D using benchtop equipment

Xiaokang Li; Xinyong Zhang; Shan Zhao; Jingyu Wang; Gang Liu; Yanan Du


Small | 2014

Stem Cells: Hepatic Differentiation of Human Embryonic Stem Cells as Microscaled Multilayered Colonies Leading to Enhanced Homogeneity and Maturation (Small 21/2014)

Rui Yao; Jingyu Wang; Xiaokang Li; Da Jung Jung; Hao Qi; Keh Kooi Kee; Yanan Du

Collaboration


Dive into the Xiaokang Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Chen

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge