kui Xiao
Nanyang Technological University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by kui Xiao.
ACM Transactions on Database Systems | 2007
Yufei Tao; Xiaokui Xiao; Reynold Cheng
In an uncertain database, every object <i>o</i> is associated with a probability density function, which describes the likelihood that <i>o</i> appears at each position in a multidimensional workspace. This article studies two types of range retrieval fundamental to many analytical tasks. Specifically, a nonfuzzy query returns all the objects that appear in a search region <i>r</i><sub><i>q</i></sub> with at least a certain probability <i>t</i><sub><i>q</i></sub>. On the other hand, given an uncertain object <i>q</i>, fuzzy search retrieves the set of objects that are within distance ϵ<sub><i>q</i></sub> from <i>q</i> with no less than probability <i>t</i><sub><i>q</i></sub>. The core of our methodology is a novel concept of “probabilistically constrained rectangle”, which permits effective pruning/validation of nonqualifying/qualifying data. We develop a new index structure called the U-tree for minimizing the query overhead. Our algorithmic findings are accompanied with a thorough theoretical analysis, which reveals valuable insight into the problem characteristics, and mathematically confirms the efficiency of our solutions. We verify the effectiveness of the proposed techniques with extensive experiments.
international conference on data engineering | 2010
Xiaokui Xiao; Guozhang Wang; Johannes Gehrke
Privacy preserving data publishing has attracted considerable research interest in recent years. Among the existing solutions, ∈-differential privacy provides one of the strongest privacy guarantees. Existing data publishing methods that achieve ∈-differential privacy, however, offer little data utility. In particular, if the output dataset is used to answer count queries, the noise in the query answers can be proportional to the number of tuples in the data, which renders the results useless. In this paper, we develop a data publishing technique that ensures ∈-differential privacy while providing accurate answers for range-count queries, i.e., count queries where the predicate on each attribute is a range. The core of our solution is a framework that applies wavelet transforms on the data before adding noise to it. We present instantiations of the proposed framework for both ordinal and nominal data, and we provide a theoretical analysis on their privacy and utility guarantees. In an extensive experimental study on both real and synthetic data, we show the effectiveness and efficiency of our solution.
international conference on management of data | 2015
Youze Tang; Yanchen Shi; Xiaokui Xiao
Given a social network G and a positive integer k, the influence maximization problem asks for k nodes (in G) whose adoptions of a certain idea or product can trigger the largest expected number of follow-up adoptions by the remaining nodes. This problem has been extensively studied in the literature, and the state-of-the-art technique runs in O((k+l) (n+m) log n ε2) expected time and returns a (1-1 e-ε)-approximate solution with at least 1 - 1/n l probability. This paper presents an influence maximization algorithm that provides the same worst-case guarantees as the state of the art, but offers significantly improved empirical efficiency. The core of our algorithm is a set of estimation techniques based on martingales, a classic statistical tool. Those techniques not only provide accurate results with small computation overheads, but also enable our algorithm to support a larger class of information diffusion models than existing methods do. We experimentally evaluate our algorithm against the states of the art under several popular diffusion models, using real social networks with up to 1.4 billion edges. Our experimental results show that the proposed algorithm consistently outperforms the states of the art in terms of computation efficiency, and is often orders of magnitude faster.
international conference on data engineering | 2013
Bin Yao; Feifei Li; Xiaokui Xiao
In this paper, we investigate the secure nearest neighbor (SNN) problem, in which a client issues an encrypted query point E(q) to a cloud service provider and asks for an encrypted data point in E(D) (the encrypted database) that is closest to the query point, without allowing the server to learn the plaintexts of the data or the query (and its result). We show that efficient attacks exist for existing SNN methods [21], [15], even though they were claimed to be secure in standard security models (such as indistinguishability under chosen plaintext or ciphertext attacks). We also establish a relationship between the SNN problem and the order-preserving encryption (OPE) problem from the cryptography field [6], [5], and we show that SNN is at least as hard as OPE. Since it is impossible to construct secure OPE schemes in standard security models [6], [5], our results imply that one cannot expect to find the exact (encrypted) nearest neighbor based on only E(q) and E(D). Given this hardness result, we design new SNN methods by asking the server, given only E(q) and E(D), to return a relevant (encrypted) partition E(G) from E(D) (i.e., G ⊆ D), such that that E(G) is guaranteed to contain the answer for the SNN query. Our methods provide customizable tradeoff between efficiency and communication cost, and they are as secure as the encryption scheme E used to encrypt the query and the database, where E can be any well-established encryption schemes.
international conference on management of data | 2011
Xiaokui Xiao; Gabriel Bender; Michael Hay; Johannes Gehrke
Prior work in differential privacy has produced techniques for answering aggregate queries over sensitive data in a privacy-preserving way. These techniques achieve privacy by adding noise to the query answers. Their objective is typically to minimize absolute errors while satisfying differential privacy. Thus, query answers are injected with noise whose scale is independent of whether the answers are large or small. The noisy results for queries whose true answers are small therefore tend to be dominated by noise, which leads to inferior data utility. This paper introduces iReduct, a differentially private algorithm for computing answers with reduced relative error. The basic idea of iReduct is to inject different amounts of noise to different query results, so that smaller (larger) values are more likely to be injected with less (more) noise. The algorithm is based on a novel resampling technique that employs correlated noise to improve data utility. Performance is evaluated on an instantiation of iReduct that generates marginals, i.e., projections of multi-dimensional histograms onto subsets of their attributes. Experiments on real data demonstrate the effectiveness of our solution.
international conference on management of data | 2014
Jun Zhang; Graham Cormode; Cecilia M. Procopiuc; Divesh Srivastava; Xiaokui Xiao
Privacy-preserving data publishing is an important problem that has been the focus of extensive study. The state-of-the-art goal for this problem is differential privacy, which offers a strong degree of privacy protection without making restrictive assumptions about the adversary. Existing techniques using differential privacy, however, cannot effectively handle the publication of high-dimensional data. In particular, when the input dataset contains a large number of attributes, existing methods require injecting a prohibitive amount of noise compared to the signal in the data, which renders the published data next to useless. To address the deficiency of the existing methods, this paper presents PrivBayes, a differentially private method for releasing high-dimensional data. Given a dataset D, PrivBayes first constructs a Bayesian network N, which (i) provides a succinct model of the correlations among the attributes in D and (ii) allows us to approximate the distribution of data in D using a set P of low-dimensional marginals of D. After that, PrivBayes injects noise into each marginal in P to ensure differential privacy, and then uses the noisy marginals and the Bayesian network to construct an approximation of the data distribution in D. Finally, PrivBayes samples tuples from the approximate distribution to construct a synthetic dataset, and then releases the synthetic data. Intuitively, PrivBayes circumvents the curse of dimensionality, as it injects noise into the low-dimensional marginals in P instead of the high-dimensional dataset D. Private construction of Bayesian networks turns out to be significantly challenging, and we introduce a novel approach that uses a surrogate function for mutual information to build the model more accurately. We experimentally evaluate PrivBayes on real data, and demonstrate that it significantly outperforms existing solutions in terms of accuracy.
IEEE Transactions on Knowledge and Data Engineering | 2007
Yufei Tao; Xiaokui Xiao; Jian Pei
Skyline and top-k queries are two popular operations for preference retrieval. In practice, applications that require these operations usually provide numerous candidate attributes, whereas, depending on their interests, users may issue queries regarding different subsets of the dimensions. The existing algorithms are inadequate for subspace skyline/top-k search because they have at least one of the following defects: 1) they require scanning the entire database at least once, 2) they are optimized for one subspace but incur significant overhead for other subspaces, or 3) they demand expensive maintenance cost or space consumption. In this paper, we propose a technique SUBSKY, which settles both types of queries by using purely relational technologies. The core of SUBSKY is a transformation that converts multidimensional data to one-dimensional (1D) values. These values are indexed by a simple B-tree, which allows us to answer subspace queries by accessing a fraction of the database. SUBSKY entails low maintenance overhead, which equals the cost of updating a traditional B-tree. Extensive experiments with real data confirm that our technique outperforms alternative solutions significantly in both efficiency and scalability.
very large data bases | 2012
Jun Zhang; Zhenjie Zhang; Xiaokui Xiao; Yin Yang; Marianne Winslett
e-differential privacy is the state-of-the-art model for releasing sensitive information while protecting privacy. Numerous methods have been proposed to enforce e-differential privacy in various analytical tasks, e.g., regression analysis. Existing solutions for regression analysis, however, are either limited to non-standard types of regression or unable to produce accurate regression results. Motivated by this, we propose the Functional Mechanism, a differentially private method designed for a large class of optimization-based analyses. The main idea is to enforce e-differential privacy by perturbing the objective function of the optimization problem, rather than its results. As case studies, we apply the functional mechanism to address two most widely used regression models, namely, linear regression and logistic regression. Both theoretical analysis and thorough experimental evaluations show that the functional mechanism is highly effective and efficient, and it significantly outperforms existing solutions.
international conference on data engineering | 2012
Jia Xu; Zhenjie Zhang; Xiaokui Xiao; Yin Yang; Ge Yu
Differential privacy (DP) is a promising scheme for releasing the results of statistical queries on sensitive data, with strong privacy guarantees against adversaries with arbitrary background knowledge. Existing studies on DP mostly focus on simple aggregations such as counts. This paper investigates the publication of DP-compliant histograms, which is an important analytical tool for showing the distribution of a random variable, e.g., hospital bill size for certain patients. Compared to simple aggregations whose results are purely numerical, a histogram query is inherently more complex, since it must also determine its structure, i.e., the ranges of the bins. As we demonstrate in the paper, a DP-compliant histogram with finer bins may actually lead to significantly lower accuracy than a coarser one, since the former requires stronger perturbations in order to satisfy DP. Moreover, the histogram structure itself may reveal sensitive information, which further complicates the problem. Motivated by this, we propose two novel algorithms, namely Noise First and Structure First, for computing DP-compliant histograms. Their main difference lies in the relative order of the noise injection and the histogram structure computation steps. Noise First has the additional benefit that it can improve the accuracy of an already published DP-complaint histogram computed using a naiive method. Going one step further, we extend both solutions to answer arbitrary range queries. Extensive experiments, using several real data sets, confirm that the proposed methods output highly accurate query answers, and consistently outperform existing competitors.
very large data bases | 2012
Lingkun Wu; Xiaokui Xiao; Dingxiong Deng; Gao Cong; Andy Diwen Zhu; Shuigeng Zhou
Computing the shortest path between two given locations in a road network is an important problem that finds applications in various map services and commercial navigation products. The state-of-the-art solutions for the problem can be divided into two categories: spatial-coherence-based methods and vertex-importance-based approaches. The two categories of techniques, however, have not been compared systematically under the same experimental framework, as they were developed from two independent lines of research that do not refer to each other. This renders it difficult for a practitioner to decide which technique should be adopted for a specific application. Furthermore, the experimental evaluation of the existing techniques, as presented in previous work, falls short in several aspects. Some methods were tested only on small road networks with up to one hundred thousand vertices; some approaches were evaluated using distance queries (instead of shortest path queries), namely, queries that ask only for the length of the shortest path; a state-of-the-art technique was examined based on a faulty implementation that led to incorrect query results. To address the above issues, this paper presents a comprehensive comparison of the most advanced spatial-coherence-based and vertex-importance-based approaches. Using a variety of real road networks with up to twenty million vertices, we evaluated each technique in terms of its preprocessing time, space consumption, and query efficiency (for both shortest path and distance queries). Our experimental results reveal the characteristics of different techniques, based on which we provide guidelines on selecting appropriate methods for various scenarios.