Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaolan Zhao is active.

Publication


Featured researches published by Xiaolan Zhao.


Nucleic Acids Research | 2012

Homologous recombination and its regulation

Lumir Krejci; Veronika Altmannova; Mário Špírek; Xiaolan Zhao

Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.


Cell | 2006

Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks.

Dana Branzei; Julie Sollier; Giordano Liberi; Xiaolan Zhao; Daisuke Maeda; Masayuki Seki; Takemi Enomoto; Kunihiro Ohta; Marco Foiani

The Ubc9 SUMO-conjugating enzyme and the Siz1 SUMO ligase sumoylate several repair and recombination proteins, including PCNA. Sumoylated PCNA binds Srs2, a helicase counteracting certain recombination events. Here we show that ubc9 mutants depend on checkpoint, recombination, and replication genes for growth. ubc9 cells maintain stalled-fork stability but exhibit a Rad51-dependent accumulation of cruciform structures during replication of damaged templates. Mutations in the Mms21 SUMO ligase resemble the ubc9 mutations. However, siz1, srs2, or pcna mutants altered in sumoylation do not exhibit the ubc9/mms21 phenotype. Like ubc9/mms21 mutants, sgs1 and top3 mutants also accumulate X molecules at damaged forks, and Sgs1/BLM is sumoylated. We propose that Ubc9 and Mms21 act in concert with Sgs1 to resolve the X structures formed during replication. Our results indicate that Ubc9- and Mms21-mediated sumoylation functions as a regulatory mechanism, different from that of replication checkpoints, to prevent pathological accumulation of cruciform structures at damaged forks.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1

Xiaolan Zhao; Rodney Rothstein

Cell cycle checkpoints are evolutionarily conserved surveillance systems that protect genomic stability and prevent oncogenesis in mammals. One important target of checkpoint control is ribonucleotide reductase (RNR), which catalyzes the rate-limiting step in dNTP and DNA synthesis. In both yeast and humans, RNR is transcriptionally induced after DNA damage via Mec1/Rad53 (yeast) and ATM/CHK2 (human) checkpoint pathways. In addition, yeast checkpoint proteins Mec1 and Rad53 also regulate the RNR inhibitor Sml1. After DNA damage or at S phase, Mec1 and Rad53 control the phosphorylation and concomitant degradation of Sml1 protein. This new layer of control contributes to the increased dNTP production likely necessary for DNA repair and replication; however, the molecular mechanism is unclear. Here we show that Dun1, a downstream kinase of Mec1/Rad53, genetically and physically interacts with Sml1 in vivo. The absence of Dun1 activity leads to the accumulation of Sml1 protein at S phase and after DNA damage. As a result, dun1Δ strains need more time to finish DNA replication, are defective in mitochondrial DNA propagation, and are sensitive to DNA-damaging agents. Moreover, phospho-Sml1 is absent or dramatically reduced in dun1Δ cells. Finally, Dun1 can phosphorylate Sml1 in vitro. These results suggest that Dun1 kinase function is the last step required in the Mec1/Rad53 cascade to remove Sml1 during S phase and after DNA damage.


Nature Cell Biology | 2006

Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination

Giacomo De Piccoli; Felipe Cortés-Ledesma; Gregory Ira; Jordi Torres-Rosell; Stefan Uhle; Sarah Farmer; Ji-Young Hwang; Félix Machín; Audrey Ceschia; Alexandra McAleenan; Violeta Cordon-Preciado; Andrés Clemente-Blanco; Felip Vilella-Mitjana; Pranav Ullal; Adam Jarmuz; Beatriz B. Leitao; Debra A. Bressan; Farokh Dotiwala; Alma Papusha; Xiaolan Zhao; Kyungjae Myung; James E. Haber; Andrés Aguilera; Luis Aragón

DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5–Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5–Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5–Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events.


Molecular Cell | 2012

Extensive DNA Damage-Induced Sumoylation Contributes to Replication and Repair and Acts in Addition to the Mec1 Checkpoint

Catherine A. Cremona; Prabha Sarangi; Yan Yang; Lisa E. Hang; Sadia Rahman; Xiaolan Zhao

The cellular response to DNA damage employs multiple dynamic protein modifications to exert rapid and adaptable effects. Substantial work has detailed the roles of canonical checkpoint-mediated phosphorylation in this program. Recent studies have also implicated sumoylation in the DNA damage response; however, a systematic view of the contribution of sumoylation to replication and repair and its interplay with checkpoints is lacking. Here, using a biochemical screen in yeast, we establish that DNA damage-induced sumoylation occurs on a large scale. We identify MRX (Mre11-Rad50-Xrs2) as a positive regulator of this induction for a subset of repair targets. In addition, we find that defective sumoylation results in failure to complete replication of a damaged genome and impaired DNA end processing, highlighting the importance of the SUMO-mediated response in genome integrity. We also show that DNA damage-induced sumoylation does not require Mec1 checkpoint signaling, and the presence of both enables optimal DNA damage resistance.


Molecular and Cellular Biology | 2007

The Slx5-Slx8 Complex Affects Sumoylation of DNA Repair Proteins and Negatively Regulates Recombination†

Rebecca C. Burgess; Sadia Rahman; Michael Lisby; Rodney Rothstein; Xiaolan Zhao

ABSTRACT Recombination is important for repairing DNA lesions, yet it can also lead to genomic rearrangements. This process must be regulated, and recently, sumoylation-mediated mechanisms were found to inhibit Rad51-dependent recombination. Here, we report that the absence of the Slx5-Slx8 complex, a newly identified player in the SUMO (small ubiquitin-like modifier) pathway, led to increased Rad51-dependent and Rad51-independent recombination. The increases were most striking during S phase, suggesting an accumulation of DNA lesions during replication. Consistent with this view, Slx8 protein localized to replication centers. In addition, like SUMO E2 mutants, slx8Δ mutants exhibited clonal lethality, which was due to the overamplification of 2μm, an extrachromosomal plasmid. Interestingly, in both SUMO E2 and slx8Δ mutants, clonal lethality was rescued by deleting genes required for Rad51-independent recombination but not those involved in Rad51-dependent events. These results suggest that sumoylation negatively regulates Rad51-independent recombination, and indeed, the Slx5-Slx8 complex affected the sumoylation of several enzymes involved in early steps of Rad51-independent recombination. We propose that, during replication, the Slx5-Slx8 complex helps prevent DNA lesions that are acted upon by recombination. In addition, the complex inhibits Rad51-independent recombination via modulating the sumoylation of DNA repair proteins.


Molecular and Cellular Biology | 2000

Mutational and Structural Analyses of the Ribonucleotide Reductase Inhibitor Sml1 Define Its Rnr1 Interaction Domain Whose Inactivation Allows Suppression of mec1 and rad53 Lethality

Xiaolan Zhao; Bilyana Georgieva; Andrei Chabes; Vladimir Domkin; Johannes H. Ippel; Jürgen Schleucher; Sybren S. Wijmenga; Lars Thelander; Rodney Rothstein

ABSTRACT In budding yeast, MEC1 and RAD53 are essential for cell growth. Previously we reported that mec1or rad53 lethality is suppressed by removal of Sml1, a protein that binds to the large subunit of ribonucleotide reductase (Rnr1) and inhibits RNR activity. To understand further the relationship between this suppression and the Sml1-Rnr1 interaction, we randomly mutagenized the SML1 open reading frame. Seven mutations were identified that did not affect protein expression levels but relieved mec1 and rad53inviability. Interestingly, all seven mutations abolish the Sml1 interaction with Rnr1, suggesting that this interaction causes the lethality observed in mec1 and rad53strains. The mutant residues all cluster within the 33 C-terminal amino acids of the 104-amino-acid-long Sml1 protein. Four of these residues reside within an alpha-helical structure that was revealed by nuclear magnetic resonance studies. Moreover, deletions encompassing the N-terminal half of Sml1 do not interfere with its RNR inhibitory activity. Finally, the seven sml1 mutations also disrupt the interaction with yeast Rnr3 and human R1, suggesting a conserved binding mechanism between Sml1 and the large subunit of RNR from different species.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair

Yu-Hung Chen; Koyi Choi; Barnabas Szakal; Jacqueline Arenz; Xinyuan Duan; Hong Ye; Dana Branzei; Xiaolan Zhao

The evolutionarily conserved Smc5/6 complex is implicated in recombinational repair, but its function in this process has been elusive. Here we report that the budding yeast Smc5/6 complex directly binds to the DNA helicase Mph1. Mph1 and its helicase activity define a replication-associated recombination subpathway. We show that this pathway is toxic when the Smc5/6 complex is defective, because mph1Δ and its helicase mutations suppress multiple defects in mutants of the Smc5/6 complex, including their sensitivity to replication-blocking agents, growth defects, and inefficient chromatid separation, whereas MPH1 overexpression exacerbates some of these defects. We further demonstrate that Mph1 and its helicase activity are largely responsible for the accumulation of potentially deleterious recombination intermediates in mutants of the Smc5/6 complex. We also present evidence that mph1Δ does not alleviate sensitivity to DNA damage or the accumulation of recombination intermediates in cells lacking Sgs1, which is thought to function together with the Smc5/6 complex. Thus, our results reveal a function of the Smc5/6 complex in the Mph1-dependent recombinational subpathway that is distinct from Sgs1. We suggest that the Smc5/6 complex can counteract/modulate a pro-recombinogenic function of Mph1 or facilitate the resolution of recombination structures generated by Mph1.


Molecular Biology of the Cell | 2010

The Smc5/6 Complex and Esc2 Influence Multiple Replication-associated Recombination Processes in Saccharomyces cerevisiae

Koyi Choi; Barnabas Szakal; Yu-Hung Chen; Dana Branzei; Xiaolan Zhao

This work shows that Mph1, Mms2, and the Shu complex function in distinct pathways in replication-associated recombinational repair and that the Smc5/6 complex and Esc2 prevent the accumulation of toxic recombination intermediates generated in these pathways.


PLOS Genetics | 2008

Cooperation of sumoylated chromosomal proteins in rDNA maintenance.

Yoshimitsu Takahashi; Stanimir Dulev; Xianpeng Liu; Natalie Jasmin Hiller; Xiaolan Zhao; Alexander Strunnikov

SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin and condensin to rDNA is altered in the mms21-CH E3-deficient mutant.

Collaboration


Dive into the Xiaolan Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koyi Choi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaclyn N. Bonner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Hang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xianpeng Liu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge