Xiaolei Ye
Wenzhou Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaolei Ye.
PLOS ONE | 2013
Chong Tian; Xiaolei Ye; Rui Zhang; Jia Long; Weiye Ren; Shibin Ding; Dan Liao; Xin Jin; Hongmei Wu; Shunqin Xu; Chenjiang Ying
Objective Hypoadiponectinemia contributes to the development of obesity and related disorders such as diabetes, hyperlipidemia, and cardiovascular diseases. In this study we investigated the effects of green tea polyphenols (GTPs) on adiponectin levels and fat deposits in high fat (HF) fed rats, the mechanism of signaling pathway was explored as well. Methods and Results Male Wistar rats were fed with high-fat diet. GTPs (0.8, 1.6, 3.2 g/L) were administered via drinking water. Serum adiponectin and insulin were measured by ELISA, mRNA levels of adiponectin and PPARγ in visceral adipose tissue (VAT) were determined by Real-time PCR, protein levels of PPARγ, phospho (p) - PPARγ, extracellular signal regulated kinase (erk) 1/2 and p-erk1/2 in VAT were determined by western blot. GTPs treatment attenuated the VAT accumulation, hypoadiponectinemia and the decreased mRNA level of adiponectin in VAT induced by HF. Decreased expression and increased phosphorylation of PPARγ (the master regulator of adiponectin), and increased activation of erk1/2 were observed in HF group, and these effects could be alleviated by GTPs treatment. To explore the underlying mechanism, VAT was cultured in DMEM with high glucose to mimic the hyperglycemia condition in vitro. Similar to the results of in vivo study, decreased adiponectin levels, decreased expression and increased phosphorylation of PPARγ, and elevated erk1/2 phosphorylation in cultured VAT were observed. These effects could be ameliorated by co-treatment with GTPs or PD98059 (a selective inhibitor of erk1/2). Conclusion GTPs reduced fat deposit, ameliorated hypoadiponectinemia in HF-fed rats, and relieved high glucose-induced adiponectin decrease in VAT in vitro. The signaling pathway analysis indicated that PPARγ regulation mediated via erk1/2 pathway was involved.
Journal of Nutritional Biochemistry | 2009
Yanrong Li; Chenjiang Ying; Xuezhi Zuo; Haiwei Yi; Weijie Yi; Yi Meng; Katsumi Ikeda; Xiaolei Ye; Yukio Yamori; Xiufa Sun
Caveolin-1 (Cav-1), a negative regulator of endothelial nitric oxide synthase (eNOS), influences various aspects of the cardiovascular functions. We had reported that a high-fat diet up-regulated aortic Cav-1 expressions in rats. In this study, we investigated the effects of green tea polyphenols (GTPs) on endothelial Cav-1 expression and phosphorylation in vitro. Bovine aortic endothelial cells (BAECs) were treated with 4 microg/ml GTPs for 0, 4, 8, 12, 16 and 24 h, and with 0, 0.04, 0.4, 4 and 40 microg/ml GTPs for 16 h, respectively. Cav-1 protein and mRNA were detected using Western blot and reverse transcriptase polymerase chain reaction. Cav-1 protein expression was down-regulated after treatment of BAECs with 4 microg/ml GTPs for 12, 16 and 24 h. And decrease in the level of Cav-1 mRNA was observed after GTP treatment for 4 and 8 h. GTPs (0.04-4 microg/ml) down-regulate Cav-1 protein expressions and mRNA levels dose dependently. PD98059, an inhibitor of extracellular signal-regulated kinase 1/2 (ERK1/2), up-regulated Cav-1 expression in BAECs alone and abolished the down-regulation effects of GTPs in BAECs while pretreatment with it. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) with SB203580, which down-regulates Cav-1 expression in BAECs alone, deteriorated the Cav-1 down-regulating effects by GTPs. In addition to the effects on expression of Cav-1, GTP treatment inhibited phosphorylation of Cav-1 [tyrosine 14 (Tyr14)]. These data indicate that GTPs down-regulate gene expression of Cav-1 time- and dose- dependently via activating ERK1/2 and inhibiting p38MAPK signaling.
Genes and Nutrition | 2013
Chong Tian; Rui Zhang; Xiaolei Ye; Changhui Zhang; Xin Jin; Yukio Yamori; Liping Hao; Xiufa Sun; Chenjiang Ying
Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. In the present study, we investigated the effects of resveratrol (RSV), a bioactive ingredient extracted from Chinese herb rhizoma polygonum cuspidatum, on permeability in vitro and the molecular mechanisms involved. Permeability was assessed by the efflux of fluorescein isothiocyanate (FITC)-dextran permeated through the monolayer endothelial cells (ECs). The mRNA levels, protein expressions, and secretions were measured by quantitative real-time PCR, western blot, and ELISA, respectively. Increased permeability and caveolin-1 (cav-1) expression were observed in monolayer ECs exposed to high glucose. Resveratrol treatment alleviated the hyperpermeability and the overexpression of cav-1 induced by high glucose in a dose-dependent manner. β-Cyclodextrin, a structural inhibitor of caveolae, reduced the hyperpermeability caused by high glucose. Resveratrol also down-regulated the increased expressions of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, or VEGF receptor-2) induced by high glucose. Inhibition of VEGF/KDR pathway by using SU5416, a selective inhibitor of KDR, alleviated the hyperpermeability and the cav-1 overexpression induced by high glucose. The above results demonstrate that RSV ameliorates caveolae-mediated hyperpermeability induced by high glucose via VEGF/KDR pathway.
Chemosphere | 2015
Dongliang He; Xiaolei Ye; Yonghua Xiao; Nana Zhao; Jia Long; Piwei Zhang; Ying Fan; Shibin Ding; Xin Jin; Chong Tian; Shunqing Xu; Chenjiang Ying
The intake of contaminated foods is an important exposure pathway for endocrine disrupting chemicals (EDCs). However, data on the occurrence of EDCs in foodstuffs are sporadic and the resultant risk of co-exposure is rarely concerned. In this study, 450 food samples representing 7 food categories (mainly raw and fresh food), collected from three geographic cities in China, were analyzed for eight EDCs using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Besides estrone (E1), other EDCs including diethylstilbestrol (DES), nonylphenol (NP), bisphenol A (BPA), octylphenol (OP), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) were ubiquitous in food. Dose-dependent relationships were found between NP and EE2 (r=0.196, p<0.05), BPA (r=0.391, p<0.05). Moreover, there existed a correspondencebetween EDCs congener and food category. Based on the obtained database of EDCs concentration combined with local food consumption, dietary EDCs exposure was estimated using the Monte Carlo Risk Assessment (MCRA) system. The 50th and 95th percentile exposure of any EDCs isomer were far below the tolerable daily intake (TDI) value identically. However, the sum of 17β-estradiol equivalents (∑EEQs) exposure in population was considerably larger than the value of exposure to E2, which implied the underlying resultant risk of multiple EDCs in food should be concern. In conclusion, co-exposure via food consumption should be considered rather than individual EDCs during health risk evaluation.
PLOS ONE | 2017
Gai Ran; Li Ying; Lin Li; Qiaoqiao Yan; Weijie Yi; Chenjiang Ying; Hongmei Wu; Xiaolei Ye
Defective lipid metabolism is associated with increased risk of various chronic diseases, such as obesity, cardiovascular diseases, and diabetes. Resveratrol (RSV), a natural polyphenol, has been shown the potential of ameliorating disregulations of lipid metabolism. The objective of this study was to investigate the effects of feed intake and RSV on lipid metabolism in zebrafish (Danio rerio). The adult males were randomly allocated to 6 groups: control (Con, 8 mg cysts/fish/day), control with 20 μmol/L RSV (Con+RSV), calorie restriction (CR, 5 mg cysts/fish/day), calorie restriction with RSV (CR+RSV), overfeed (OF, 60 mg cysts/fish/day), and overfeed with RSV (OF+RSV) groups. The treatment period was 8 weeks. Results showed that CR reduced body length, body weight, and condition factor of zebrafish. CR reduced levels of plasma triglyceride (TG) and induced protein expression of phosphorylated AMP-activated protein kinase-α (pAMPKα), silent information regulator 2 homolog 1 (Sirt1), and peroxisome proliferator activated receptor gamma coactivator-1α (PGC1α). RSV attenuated CR-induced pAMPKα/AMPKαincreases. RSV increased levels of Sirt1 protein in the OF zebrafish, and decreased OF-induced increase in peroxisome proliferator-activated receptor-γ (PPARγ) protein level. Additionally, RSV down-regulated caveolin-1 and up-regulated microtubule-associated protein 1 light chain 3 -II (LC3-II) protein levels in OF zebrafish. In conclusion, these results suggest that 1) CR reduces plasma TG level through activation of the AMPKα-Sirt1- PGC1α pathway; 2) under different dietary stress conditions RSV might regulate AMPK phosphorylation bi-directionally; 3) RSV might regulate lipid metabolism through the AMPKα-Sirt1-PPARγ pathway in OF zebrafish.
Journal of Applied Toxicology | 2015
Jian Liu; Xin Jin; Nana Zhao; Xiaolei Ye; Chenjiang Ying
Bisphenol A (BPA), one of the high‐volume chemicals worldwide, has a core structure resembling that of natural estradiol. Recent evidence has demonstrated that exposure to BPA has a relationship with the risk of cancer. The objective of our study is to investigate the mechanisms underlying the pro‐angiogenic effects of BPA. We demonstrated that BPA markedly induces endothelial cell proliferation, migration and tube formation by activating endothelial nitric oxide synthase. BPA‐induced nitric oxide generation appeared to be associated with the X‐linked inhibitor of apoptosis protein (XIAP), which competes with endothelial nitric oxide synthase for caveolin‐1. BPA was shown to exert its pro‐angiogenic effect by upregulating XIAP expression via G protein‐coupled estrogen receptor (ER) activation but not via ERα or ERβ. Our data suggest that 100 nM BPA promote angiogenesis in a G protein‐coupled ER‐dependent genomic pathway, and provide a novel insight into the potential role of XIAP in mediating the pro‐angiogenic effects of BPA in endothelial cells. Copyright
Food and Chemical Toxicology | 2014
Chong Tian; Xin Jin; Xiaolei Ye; Hongmei Wu; Weiye Ren; Rui Zhang; Jia Long; Chenjiang Ying
Light alcohol consumption was reported to be negatively associated with insulin resistance and risk of cardiovascular diseases; however, the results were inconsistent. We here investigate whether long term intake of low-concentration ethanol can affect adiponectin levels. Male Wistar rats were exposed to 0.1% ethanol in drinking water for 26weeks. Visceral adipose tissue (VAT) was cultured and treated with ethanol, SB203580, GW9662, or rosiglitazone. Adiponectin in serum and culture supernatant were measured by ELISA, mRNA levels of adiponectin and PPARγ were determined by RT-PCR, and protein expressions of PPARγ, p38 MAPK and phospho-p38 MAPK were determined by Western blot. In vivo, ethanol decreased the mRNA of adiponectin in VAT and serum adiponectin significantly. Decreased PPARγ and increased activation of p38 MAPK were observed in ethanol treated group. In vitro, SB203580 increased the adiponectin and PPARγ levels in normal DMEM cultured VAT and ameliorated ethanol-induced decrease of adiponectin and PPARγ expressions. GW9662 also decreased the adiponectin levels; Both ethanol and GW9662 weakened the rosiglitazone-induced elevation of adiponectin levels in cultured VAT. These data suggest that long term intake of 0.1% ethanol down-regulated adiponectin levels, and the regulation of PPARγ via p38 MAPK pathway plays an important role in the mechanism underneath.
PLOS ONE | 2016
Shibin Ding; Xuezhi Zuo; Ying Fan; Hongyu Li; Nana Zhao; Huiqin Yang; Xiaolei Ye; Dongliang He; Hui Yang; Xin Jin; Chong Tian; Chenjiang Ying
Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein’s beneficial function on hepatic lipid metabolism.
Asia Pacific Journal of Clinical Nutrition | 2015
Xuezhi Zuo; Xiaolei Ye; Fangyun Sun; Kun Qian; Siyun Xiang; Wangqun Liang; Gang Xu; Ying Yao; Chenjiang Ying
OBJECTIVES Peritoneal dialysis patients are at risk of glucose absorption from peritoneal dialysate, not only because of energy imbalance but also the toxic effects of high glucose. The current widely applied formulae may be not suitable for estimation of glucose absorption in continuous ambulatory peritoneal dialysis (CAPD) patients. This study examined the actual glucose absorption in a cohort of CAPD patients and compared the results with estimates from four current formulae. METHODS We conducted a survey of glucose absorption of a cohort of 72 CAPD patients and compared actual dialysate glucose absorbed and estimates using K/DOQI formula, Grodstein formula, Bodnar formula, or a percentage estimate of 60%. RESULTS The total dialysate glucose infused each day varied from 54.4 to 191 g/day with average of 102±27.9 g. The average of glucose absorbed was 65.7 g (ranging from 19.5 to 131 g) by actual measurements. The mean absorption rate was 64.4% (ranging from 30.6% to 92.4%). The glucose absorbed from dialysate accounted for 13.8% (ranging from 5.0% to 30.1%) of total energy intake. The average errors of absolute values between actual measurements and estimates were greater than 10 g or 20 g glucose (p<0.001). The average errors in percentages were greater than 20% or 40%, dependently on estimating methods. CONCLUSIONS The applications of current estimating methods may have limitations. The actual measurement provides dietitians and doctors with more exact information of absorbed glucose and energy compared to the current estimating methods.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2005
Xiaolei Ye; Wensheng Yan; Hong Xie; Meiying Zhao; Chenjiang Ying