Xiaoli Chai
Tongji University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoli Chai.
Bioresource Technology | 2012
Guangyin Zhen; Xueqin Lu; Youcai Zhao; Xiaoli Chai; Dongjie Niu
The potential benefits of Fe(II)-activated persulfate oxidation on sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) was used to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and viscosity were determined in an attempt to explain the observed changes in sludge dewaterability. The optimal conditions to give preferable dewaterability characteristics were found to be persulfate (S(2)O(8)(2-)) 1.2 mmol/gVSS, Fe(II) 1.5 mmol/gVSS, and pH 3.0-8.5, which demonstrated a very high CST reduction efficiency (88.8% reduction within 1 min). It was further observed that both soluble EPS and viscosity played relatively negative roles in sludge dewatering, whereas no correlation was established between sludge dewaterability and bound EPS. Three-dimensional excitation-emission matrix (EEM) fluorescence spectra also revealed that soluble EPS of sludge were degraded and sludge flocs were ruptured by persulfate oxidation, which caused the release of water in the intracellular pace and subsequent improvement of its dewaterability.
Bioresource Technology | 2012
Guangyin Zhen; Xueqin Lu; Yu-You Li; Youcai Zhao; Baoying Wang; Yu Song; Xiaoli Chai; Dongjie Niu; Xianyan Cao
The potential of Fe(II)-activated persulfate (S(2)O(8)(2-)) oxidation on enhancing the dewaterability of sludge flocs from 3-full scale wastewater treatment plants (WWTPs) were investigated. Normalized capillary suction time (CST) was applied to evaluate sludge dewaterability. Both extracellular polymeric substances (EPS) and metabolic activity of microorganisms were determined to explore the responsible mechanism. Fe(II)-S(2)O(8)(2-) oxidation effectively improved sludge dewaterability. The most important mechanisms were proposed to be the degradation of EPS incorporated in sludge flocs and rupture of microbial cells. Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy confirmed that the powerful SO(4)(-) from Fe(II)-S(2)O(8)(2-) system destroyed the particular functional groups of fluorescing substances (i.e., aromatic protein-, tryptophan protein-, humic- and fulvic-like substances) in EPS and caused cleavage of linkages in the polymeric backbone and simultaneous destruction of microbial cells, resulting in the release of EPS-bound water, intracellular materials and water of hydration inside cells, and subsequent enhancement of dewaterability.
Bioresource Technology | 2012
Guangyin Zhen; Xueqin Lu; Baoying Wang; Youcai Zhao; Xiaoli Chai; Dongjie Niu; Aihua Zhao; Yu-You Li; Yu Song; Xianyan Cao
The potential benefits of Fe(II)-activated persulfate (S(2)O(8)(2-)) oxidation under mild temperature in enhancing the dewaterability of waste activated sludge were investigated. Capillary suction time (CST) was used to characterize sludge dewatering. Zeta potential, particle size distribution, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy, fourier-transformed infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were employed to explore influencing mechanisms. The results indicated that the dewaterability was deteriorated with single thermal treatment, but significantly enhanced in the presence of Fe(II)-S(2)O(8)(2-) oxidation and further advanced together with thermal treatment. EEM and FT-IR analysis indicated that combined thermal and Fe(II)-S(2)O(8)(2-) oxidation pretreatment led to degrading of tyrosine and tryptophan protein-like substances in extracellular polymeric substances (EPS) and cleavage of linkages in polymeric backbone. SEM images further revealed the rupture of sludge flocs at the colloidal scale, which contributed to the release of EPS-bound water and interstitial water trapped between flocs, and subsequent enhanced dewaterability.
Bioresource Technology | 2014
Xin Zhao; Yan Zhou; Sheng Huang; Duanyang Qiu; Lance Schideman; Xiaoli Chai; Youcai Zhao
The characteristics of cultivating high-density microalgae-bacteria consortium with landfill leachate was tested in this study. Landfill leachate was collected from Laogang landfill operated for over 10 years in Shanghai, China. The maximum biomass concentration of 1.58g L(-1) and chlorophyll a level of 22mg L(-1) were obtained in 10% leachate spike ratio. Meanwhile, up to 90% of the total nitrogen in landfill leachate was removed in culture with 10% leachate spike ratio with a total nitrogen concentration of 221.6mg L(-1). The fluorescence peak of humic-like organic matters red shifted to longer wavelengths by the end of culture, indicating that microalgae-bacteria consortium was effective for treating landfill leachate contaminants. Furthermore, with the leachate spike ratio of 10%, the maximum lipid productivity and carbon fixation were 24.1 and 65.8mg L(-1)d(-1), respectively. Results of this research provide valuable information for optimizing microalgae culture in landfill leachate.
Frontiers of Environmental Science & Engineering in China | 2014
Guangyin Zhen; Xueqin Lu; Baoying Wang; Youcai Zhao; Xiaoli Chai; Dongjie Niu; Tiantao Zhao
In this work, the enhanced dewaterabing characteristics of waste activated sludge using Fenton pretreatment was investigated in terms of effectiveness and statistical optimization. Response surface method (RSM) and central composite design (CCD) were applied to evaluate and optimize the effectiveness of important operational parameters, i.e., H2O2 concentrations, Fe2+ concentrations and initial pH values. A significant quadratic polynomial model was obtained (R2= 0.9189) with capillary suction time (CST) reduction efficiency as the response. Numerical optimization based on desirability function was carried out. The optimum values for H2O2, Fe2+, and initial pH were found to be 178 mg·g−1 VSS (volatile suspended solids), 211 mg·g−1 VSS and 3.8, respectively, at which CST reduction efficiency of 98.25% could be achieved. This complied well with those predicted by the established polynomial model. The results indicate that Fenton pretreatment is an effective technique for advanced waste activated sludge dewatering. The enhancement of sludge dewaterability by Fenton’s reagent lies in the migration of sludge bound water due to the disintegration of sludge flocs and microbial cells lysis.
Journal of Hazardous Materials | 2012
Xiaoli Chai; Guixiang Liu; Xin Zhao; Yongxia Hao; Youcai Zhao
Three-dimensional excitation emission matrix (EEM) fluorescence spectroscopy was employed to investigate the structural properties and Hg(II)-binding behavior of humic substances (HS) extracted from different landfill stabilization processes. The EEM fluorescence properties of humic acid (HA) are characterized by intense fluorescence at Ex/Em=440/500 nm and Ex/Em=380/460 nm. Two relatively strong fluorescence peaks appeared in the region of Ex/Em=260-290/350-370 nm with the landfill time extended, which represented a protein-like or soluble microbial byproduct structure. The fluorescence EEM spectrum of fulvic acid (FA) featured a prominent peak of strong relative fluorescence intensity (FI=1598) at Ex/Em=330/440 nm (peak C) accompanied by a weak fluorophore (FI=594) located at Ex/Em=275/445 nm (peak D). There were strong interactions between HA and Hg, and the overall stability constant of Hg(II)-HA was mainly determined by the abundant O-ligands existing in HA. FA had a much higher Hg(II)-complexing capacity compared to HA samples, which may be ascribed to its relatively high content of carboxylic groups. The Hg(II)-complexing capacity of HA tended to decrease with stabilization process extension. The much higher Hg(II)-complexing capacity of FA than that of HA implied that FA played an important role in binding Hg(II) in early landfill stabilization process.
Waste Management | 2009
Ziyang Lou; Xiaoli Chai; Dongjie Niu; Yuanyang Ou; Youcai Zhao
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH4+, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW<1kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu2+ was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48h with leachate in the ratio of 5g of sample per 50ml of leachate. Cu2+ uptake by the raw soil was approximately 4.60microg/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11microg/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu2+.
Bioresource Technology | 2012
Xiaoli Chai; Xin Zhao
Reduction of carbon loss from the effluent is one of the most important aspects of photobioreactors design. In this study, a novel gas sparger of bubble tank was adopted in a photobioreactor to enhance carbon dioxide (CO(2)) mass transfer rate as well as alleviate dissolved oxygen (DO) accumulation. The results showed that low DO level in the culture can be obtained due to the turbulent hydrodynamic condition provided by the bubble tank. The effects of CO(2) concentration, flow rate of influent, and light intensity on CO(2) removal efficiency were investigated. The maximum CO(2) removal efficiency was 94% at flow rate of 30 mL min(-1), light intensity of 179 μmol m(-2) s(-1) and CO(2) concentration of 10%, implying that the novel gas sparger is a promising alternative for CO(2) removal from CO(2)-enriched air by cultivating microalgae in the photobioreactor.
Journal of Environmental Sciences-china | 2010
Dan Han; Youcai Zhao; Binjie Xue; Xiaoli Chai
An experimental bio-column composed of aged refuse was installed around the exhaust pipe as a new way to mitigate methane in refuse landfill. One of the objectives of this work was to assess the effect of aged refuse thickness in bio-column on reducing CH4 emissions. Over the study period, methane oxidation was observed at various thicknesses, 5 cm (small size), 10 cm (middle size) and 15 cm (large size), representing one to three times of pipeline diameters. The middle and large size both showed over 90% methane conversion, and the highest methane conversion rate of above 95% occurred in the middle-size column cell. Michaelis-Menten equation addressed the methanotrophs diffusion in different layers of the bio-columns. Maximum methanotrophic activity (Vmax) measured at the three thicknesses ranged from 6.4 x 10(-3) to 15.6 x 10(-3) units, and the half-saturation value (K(M)) ranged from 0.85% to 1.67%. Both the highest Vmax and K(M) were observed at the middle-size of the bio-column, as well as the largest methanotrophs population, suggesting a significant efficiency of methane mitigation happened in the optimum zone with greatest affinity and methanotrophic bacteria activities. Therefore, bio-column is a potential style for methane abatement in landfill, and the aged refuse both naturally formed and artificially placed in the column plays a critical role in CH4 emission.
Journal of Environmental Sciences-china | 2009
Ziyang Lou; Bin Dong; Xiaoli Chai; Yu Song; Youcai Zhao; Nanwen Zhu
Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid size distribution and variations of leachate. These leachates were separated using micro-filtration and ultra-filtration into specific size fractions, i.e., suspended particles (SP) (> 1.2 microm), coarse colloids (CC) (1.2-0.45 microm), fine colloids (FC) (0.45 microm, 5 kDa/1 kDa molecular weight (MW)), and dissolved organic matters (DM, < 5 kDa/1 kDa MW). The specific colloids in each size fraction were quantified and characterized through chemical oxygen demands (COD), total solid (TS), pH, NH4+-N, total organic carbon (TOC) and fixed solid (FS). It was found that COD, NH4+-N and TS in leachate decreased significantly over ages, while pH increased. The dissolved fractions (< 5 kDa/1 kDa) dominated (over 50%) in three leachates in terms of COD, and the organic matter content in dissolved fraction of leachates decreased and the inorganic matter increased as the disposal time extended, with the TOC/COD ratio 30%-7%. Dissolved fractions decreased from 82% to 40% in terms of TOC as the disposal time extended, suggested that the organic matter remained in leachate would form into middle molecular weight substances during the degradation process.