Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where oli Xia is active.

Publication


Featured researches published by oli Xia.


Journal of General Virology | 2009

Effective inhibition of infectious bursal disease virus replication by recombinant avian adeno-associated virus-delivered microRNAs.

Yongjuan Wang; Huaichang Sun; Pengpeng Shen; Xinyu Zhang; Xiaoli Xia

RNA interference (RNAi) is a novel antiviral strategy against a variety of virus infections. Infectious bursal disease virus (IBDV) causes an economically important disease in young chickens. This study demonstrated efficient inhibition of IBDV replication by recombinant avian adeno-associated virus (rAAAV)-delivered anti-VP1 and anti-VP2 microRNAs (miRNAs). In the viral vector-transduced cells, sequence-specific miRNA expression was detected by poly(A)-tailed RT-PCR. Reporter assays using a pVP2-EGFP vector showed significant and long-lasting inhibition of VP2-EGFP expression in cells transduced with anti-VP2 miRNA-expressing rAAAV-RFPmiVP2E, but not with the control miRNA-expressing rAAAV-RFPmiVP2con or anti-VP1 miRNA-expressing rAAAV-RFPmiVP1. Semi-quantitative RT-PCR and/or virus titration assays showed a significant inhibitory effect on homologous IBDV replication in cells transduced with rAAAV-RFPmiVP1 or rAAAV-RFPmiVP2E. For two heterologous IBDV isolates, transduction with rAAAV-RFPmiVP1 led to slightly weaker but similar inhibitory effects, whereas transduction with rAAAV-RFPmiVP2E resulted in significantly weaker and different inhibitory effects. These results suggest that rAAAV could act as an efficient vector for miRNA delivery into avian cells and that VP1 is the more suitable target for interfering with IBDV replication using RNAi technology.


Microbial Pathogenesis | 2015

The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd

Jia Xu; Xiao Tan; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Staphylococci are the leading pathogens of bovine mastitis which is difficult to control. However, the published data on the prevalence of staphylococcal species, virulence and antibiotic resistance genes in bovine mastitis from China are limited. In this study, 104 out of 209 subclinical mastitis milk samples from a single Chinese dairy herd were cultured-positive for staphylococci (49.8%), which were further identified as coagulase-positive staphylococci (CPS) or coagulase-negative staphylococci (CNS). According to the partial tuf and/or 16S rRNA gene sequence, the 28 CPS isolates were confirmed to be Staphylococcus aureus (26.9%), and 76 CNS isolates were assigned to 13 different species (73.1%) with Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus xylosus and Staphylococcus chromogenes as the dominant species. In the 28 S. aureus isolates, the most prevalent general virulence genes were coa, Ig and eno (100%), followed by hla (96.4%), hlb (92.9%), fib (92.9%), clfA (89.3%), clfB (85.7%) and nuc (85.7%). Both exotoxin and biofilm-associated genes were significantly less prevalent than the previously reported. Although 19 different virulence gene patterns were found, only one was dominant (32.1%). The prevalence of blaZ (82.1%) or mecA gene (35.7%) was much higher than the previously reported. In the 76 CNS isolates, the virulence genes were significantly less prevalent than that in the S. aureus isolates. Among the 4 main CNS species, S. chromogenes (n = 12) was the only species with high percentage (75%) of blaZ gene, while S. sciuri (n = 12) was the only species with the high percentage (66.7%) of mecA gene. The most of antibiotic resistance genes were present as multi-resistance genes, and the antibiotic resistances were attributed by different resistance genes between resistant S. aureus and CNS isolates. These data suggest that the prevalence of staphylococcal species, virulence and antibiotic resistance in the mastitis milk from the Chinese dairy herd are different from the previously reported, and that the herd- or farm-based diagnosis of staphylococcal bovine mastitis is required.


Virus Research | 2013

Generation and characterization of a porcine endometrial endothelial cell line susceptible to porcine reproductive and respiratory syndrome virus

Lili Feng; Xinyu Zhang; Xiaoli Xia; Yangyang Li; Shan He; Huaichang Sun

Previous studies on the underlying mechanism for porcine reproductive and respiratory syndrome virus (PRRSV)-induced reproductive failure have been focused on the viral replication in the endothelial macrophages, and the susceptibility of porcine endometrial endothelial (PEE) cells to PRRSV has not yet been investigated. Therefore, in the present study we generated a PEE cell line by transfection of the primary cells with a SV40 large T antigen expression vector. The PEE cell line maintained the endothelial morphology with a significantly faster growth rate, shorter population doubling time and higher plating efficiency than the primary cells. The endothelial origination of the cell line was confirmed by detection of the endothelial cell-specific markers. The PEE cell line had been passed successively for 60 generations with an unlimited growth potential. To further characterize the PEE cell line, cells of different passages were infected with different PRRSV strains and analyzed for the viral antigen and replication. Overt cytopathic effect was observed from 36h postinfection (HPI) and the viral antigen detected as early as 12 HPI. The infectious virus was recovered from the infected PEE cells with a titer higher than that in MARC-145 cells. Since the data presented indicate a high susceptibility of PEE cells to PRRSV, we conclude that the PEE cell line generated will be useful for growth of PRRSV and further studies on the underlying mechanism for PRRSV infection of PEE cells. The finding of the susceptibility of PEE cells to PRRSV may provide an alternative explanation for PRRSV-induced reproductive failure.


Virus Research | 2014

Additive inhibition of porcine reproductive and respiratory syndrome virus infection with the soluble sialoadhesin and CD163 receptors

Yang Chen; Rui Guo; Shan He; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease to the swine industry worldwide. Current PRRS vaccines are only partially effective and new vaccine development faces great challenges. Sialoadhesin (Sn) and CD163 are the two essential receptors for PRRSV infection of porcine alveolar macrophage (PAM). To investigate the feasibility of the soluble viral receptors for PRRS control, in the present study we generated recombinant adenovirus (rAd) expressing the four N-terminal Ig-like domains of porcine Sn (Sn4D), the fifth SRCR domain (SRCR5) or domains 5-9 (SRCR59) of porcine CD163 as porcine Fc (pFc) fusion proteins. Efficient expression of the soluble viral receptors in the rAd-transduced cells was confirmed by RT-PCR and Western blotting. To detect their antiviral activities, the soluble viral receptors were purified from the media of rAd-transduced cells and identified by Western blotting. The viral binding assay showed that the soluble receptors Sn4D-Fc and SRCR59-Fc, but not SRCR5-Fc and the control pFc, were able to bind to PRRSV particles. The viral infection blocking assays showed that co-treatment of PRRSV with different concentrations of Sn4D-Fc and SRCR59-Fc proteins resulted in a much higher (72.1%-77.6%) reduction in PRRSV-positive cell number than the single protein treatment (45.1%-60.0% or 44.0%-56.2%). To investigate the feasibility of delivering the soluble viral receptors to PAM, two pig cell lines were transduced with rAd-Sn4D-Fc and/or rAd-SRCR59-Fc using a transwell culture system. PAM cells were infected with PRRSV and then co-cultured with the rAd-transduced cells. Viral titration assay showed that co-cultivation of the infected PAM with rAd-Sn4D-Fc- and rAd-SRCR59-Fc-transduced cells resulted in much higher (by ∼3.5 log) reduction in the viral titers (TCID50) than that of co-cultivation with the single vector-transduced cells (by ∼1.0 log). Further studies showed that the rAd co-delivered soluble receptors Sn4D-Fc and SRCR59-Fc had dose-dependent and temporal antiviral effect against three different PRRSV strains. Since the data presented indicate an additive anti-PRRSV activity between the soluble receptors Sn4D-Fc and SRCR59-Fc, we conclude that the two rAd vectors generated will be useful for development a novel reagent for PRRS control.


Protein Expression and Purification | 2014

Single-step purification of recombinant proteins using elastin-like peptide-mediated inverse transition cycling and self-processing module from Neisseria meningitides FrpC

Wenjun Liu; Qian Wu; Bi Xu; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Purification of recombinant proteins is a major task and challenge in biotechnology and medicine. In this paper we report a novel single-step recombinant protein purification system which was based on elastin-like peptide (ELP)-mediated reversible phase transition and FrpC self-processing module (SPM)-mediated cleavage. After construction of a SPM-ELP fusion expression vector, we cloned the coding sequence for green fluorescent protein (GFP), the Fc portion of porcine IgG (pFc) or human β defensin 3 (HBD3) into the vector, transformed the construct into Escherichia coli, and induced the fusion protein expression with IPTG. The target-SPM-ELP fusion proteins GFP-SPM-ELP, Fc-SPM-ELP and HBD3-SPM-ELP were expressed in a soluble form and efficiently purified from the clarified cell extracts by two rounds of inverse transition cycling (ITC). Under the optimized conditions, the SPM-mediated cleavage efficiencies for the three fusion proteins ranged from 92% to 93%. After an additional round of ITC, the target proteins GFP, pFc and HBD3 were recovered with purities ranging from 90% to 100% and yields ranging from 1.1 to 36mg/L in shake flasks. The endotoxin levels in all of the three target proteins were <0.03EU/mg. The three target proteins were functionally active with the expected molecular weights. These experimental results confirmed the high specificity and efficiency of SPM-mediated cleavage, and suggested the applicability of SPM-ELP fusion system for purification of recombinant proteins.


Journal of Virological Methods | 2010

Effective inhibition of replication of infectious bursal disease virus by miRNAs delivered by vectors and targeting the VP2 gene

Yongjuan Wang; Huaichang Sun; Pengpeng Shen; Xinyu Zhang; Xiaoli Xia; Bing Xia

RNA interference (RNAi) is a potent mechanism against a variety of viral infections. Infectious bursal disease virus (IBDV) causes an important disease economically in chickens, which is difficult to control. As part of the development of viral vector-mediated RNAi strategy against the disease, five anti-VP2 small interference RNAs were selected for construction of microRNA (miRNA) expression vectors tailored for avian cells. Transfection of DF-1 cells with the five vectors resulted in significant inhibition of VP2-EGFP reporter gene expression. More effective miVP2A and miVP2E were selected for further study using single or double miRNA expression vectors. After demonstration of specific miRNA expression, the gene silencing effects were determined in the vector-transfected and IBDV-infected cells. Reverse transcriptase PCR and virus titration showed inhibition rates from 76 to 82% on VP2 expression and significant decreases in virus titer by individual and co-expressed miVP2A and miVP2E. The inhibitory effects lasted for at least 120 h after infection with IBDV. These data suggest that the miRNAs targeting the VP2 can inhibit efficiently replication of IBDV.


Journal of General Virology | 2012

Inhibition of infectious bursal disease virus infection by artificial microRNAs targeting chicken heat-shock protein 90.

Weifeng Yuan; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Infectious bursal disease virus (IBDV) causes an important disease in young chickens. Chicken heat-shock protein 90 (cHsp90) has been shown to be a functional component of the cellular receptor complex for IBDV infection. This study demonstrates the inhibitory effect of vector-expressed anti-cHsp90α microRNA (miRNA) on IBDV infection. The reporter vectors pcHsp90α-EGFP and pcHsp90β-EGFP were constructed to facilitate effective miRNA selection. Two anti-cHsp90α and one anti-cHsp90β miRNA-expression vectors were constructed for a stable transfection study. Poly(A)-tailed RT-PCR detected sequence-specific miRNA transcription in transfected cells. Semiquantitative RT-PCR showed inhibition of cHsp90 transcription in transfected cells. A virus-titration assay showed that the anti-cHsp90α miRNA, but not the anti-cHsp90β miRNA, had inhibitory effects on IBDV infection. These results suggest that cHsp90α is a functional component of the cellular receptor complex for IBDV infection, and that anti-cHsp90α miRNA could be used as an anti-IBDV reagent.


Veterinary Immunology and Immunopathology | 2017

Purification of chicken IgY by binding capture using elastin-like polypeptide-tagged immunoglobulin-binding domain of streptococcal protein G

Wenlong Xia; Huipeng Lu; Yangyang Li; Jun Cao; Xiaohui Zhou; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Chicken egg yolk immunoglobulin (IgY) is a superior alternative to mammalian immunoglobulin, but its practical application is limited due to the complex purification procedure. In this study, the C2 domain of streptococcal protein G (SPG) with the binding affinity for chicken IgY was expressed in E. coli as an elastin-like polypeptide (ELP) fusion protein, and purified to a high purity by inverse transition cycling (ITC). Binding experiments showed that chicken IgY could bind to and eluted off the ELP-C2 fusion protein in pH-, temperature- and/or time-dependent manners. By using the ELP-C2 protein, a simple chicken IgY purification method was developed, and its purification performance was compared with that of ammonium sulfate precipitation and ethanol fractionation. Quantitative SDS-PAGE analysis showed that the ELP-C2 binding capture method provided a chicken IgY purity of 96.3% and a recovery of 64%, both of which were significantly higher than that of the two traditional methods The ELP-C2 binding capture method could be accomplished within 3h, in contrast to 30.3h for ammonium sulfate precipitation or 4.3h for ethanol fractionation. These data suggest that the ELP-C2 binding capture was a simple, efficient and cost-effective method for purification of chicken IgY.


Protein Expression and Purification | 2019

Half-life extension of porcine interferon-α by fusion to the IgG-binding domain of streptococcal G protein

Yang Zong; Xiao Tan; Jingjing Xiao; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Recombinant interferon-α (rIFN-α) has been widely used for treating viral infections. However, the clinical efficacy of unmodified rIFN-α is limited due to small molecular size and rapid clearance from circulation. In this study we developed a novel strategy for half-life extension of porcine IFN-α (PoIFN-α) by fusion to the immunoglobulin (Ig)-binding C2 domain of streptococcal protein G (SPG). The coding sequences for PoIFN-α6 and SPG C2 domain, with a tobacco etch virus (TEV) protease recognition sequence introduced at the 5-end, were cloned into an elastin-like polypeptide (ELP) fusion expression vector and expressed as an ELP-PoIFNα-C2 fusion protein. After optimization of the conditions for soluble protein expression and purification, the fusion protein was purified to more than 90% purity by two rounds of inverse transition cycling (ITC) in the presence of 0.5% Triton X-100. After cleavage with self-aggregating peptide ELK-16-tagged tobacco etch virus protease, the protease was removed by quick centrifugation and PoIFNα-C2 protein was recovered by an additional round of ITC with 98% purity. Western blotting analysis showed that PoIFNα-C2 protein had the specific affinity for pig IgG binding. The antiviral assay showed that PoIFNα-C2 protein had potent antiviral activities against vesicular stomatitis virus and porcine pseudorabies virus. After single intravenous or subcutaneous injection into rats, PoIFNα-C2 protein showed 16- or 4-fold increase in serum half-life with significantly improved bioavailability.


Veterinary Microbiology | 2018

Recombinant adenovirus-delivered soluble CD163 and sialoadhesin receptors protected pigs from porcine reproductive and respiratory syndrome virus infection

Wenlong Xia; Zhi Wu; Changming Guo; Shanyuan Zhu; Xinyu Zhang; Xiaoli Xia; Huaichang Sun

Porcine reproductive and respiratory syndrome (PRRS) is one of the most important swine diseases affecting pig industry worldwide. Sialoadehesin (Sn) and CD163 are the two specific receptors for PRRSV infection of porcine alveolar macrophages. Our previous study showed that the soluble Sn receptor Sn4D-Fc and soluble CD163 receptor SRCR59-Fc expressed by the two recombinant adenoviral (rAd) vectors have an additive anti-PRRSV effect in vitro. In the present study, rAd-Sn4D-Fc and rAd-SRCR59-Fc were inoculated into pigs, and the efficient expression of Sn4D-Fc and SRCR59-Fc proteins was detected by ELISA. Then, PRRSV-naïve pigs were inoculated with rAd-Sn4D-Fc and/or rAd-SRCR59-Fc before contagious infection with different PRRSV strains. Among the three rAd inoculation groups, simultaneous inoculation with the two rAd vectors provided the best protection against highly pathogenic JXA1 strain PRRSV, followed by rAd-SRCR59-Fc inoculation and rAd-Sn4D-Fc inoculation. Clinical observation and quantitative RT-PCR analyses showed that all of the double rAd-inoculated pigs (n = 9) survived from the contagious infection with highly pathogenic JXA1, JS07 or SH1705 strain PRRSV with significantly alleviated clinical scores, viremia, fecal viral emission and tissue virus loads. These data suggest that rAd-Sn4D-Fc and rAd-SRCR59-Fc can be developed further as the universal therapeutic vaccine to facilitate PRRSV eradication.

Collaboration


Dive into the oli Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge