Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoli Zhao is active.

Publication


Featured researches published by Xiaoli Zhao.


Nature Cell Biology | 2009

MG53 nucleates assembly of cell membrane repair machinery

Chuanxi Cai; Haruko Masumiya; Noah Weisleder; Noriyuki Matsuda; Miyuki Nishi; Moonsun Hwang; Jae-Kyun Ko; Peihui Lin; Angela Thornton; Xiaoli Zhao; Zui Pan; Shinji Komazaki; Marco Brotto; Hiroshi Takeshima; Jianjie Ma

Dynamic membrane repair and remodelling is an elemental process that maintains cell integrity and mediates efficient cellular function. Here we report that MG53, a muscle-specific tripartite motif family protein (TRIM72), is a component of the sarcolemmal membrane-repair machinery. MG53 interacts with phosphatidylserine to associate with intracellular vesicles that traffic to and fuse with sarcolemmal membranes. Mice null for MG53 show progressive myopathy and reduced exercise capability, associated with defective membrane-repair capacity. Injury of the sarcolemmal membrane leads to entry of the extracellular oxidative environment and MG53 oligomerization, resulting in recruitment of MG53-containing vesicles to the injury site. After vesicle translocation, entry of extracellular Ca2+ facilitates vesicle fusion to reseal the membrane. Our data indicate that intracellular vesicle translocation and Ca2+-dependent membrane fusion are distinct steps involved in the repair of membrane damage and that MG53 may initiate the assembly of the membrane repair machinery in an oxidation-dependent manner.


Nature Cell Biology | 2005

Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle

Xu Wang; Noah Weisleder; Claude Collet; Jingsong Zhou; Yi Chu; Yutaka Hirata; Xiaoli Zhao; Zui Pan; Marco Brotto; Heping Cheng; Jianjie Ma

Most excitable cells maintain tight control of intracellular Ca2+ through coordinated interaction between plasma membrane and endoplasmic or sarcoplasmic reticulum. Quiescent sarcoplasmic reticulum Ca2+ release machinery is essential for the survival and normal function of skeletal muscle. Here we show that subtle membrane deformations induce Ca2+ sparks in intact mammalian skeletal muscle. Spontaneous Ca2+ sparks can be reversibly induced by osmotic shock, and participate in a normal physiological response to exercise. In dystrophic muscle with fragile membrane integrity, stress-induced Ca2+ sparks are essentially irreversible. Moreover, moderate exercise in mdx muscle alters the Ca2+ spark response. Thus, membrane-deformation-induced Ca2+ sparks have an important role in physiological and pathophysiological regulation of Ca2+ signalling, and uncontrolled Ca2+ spark activity in connection with chronic activation of store-operated Ca2+ entry may function as a dystrophic signal in mammalian skeletal muscle.


Nature | 2007

TRIC channels are essential for Ca2+ handling in intracellular stores.

Masayuki Yazawa; Christopher Ferrante; Jue Feng; Kazuhiro Mio; Toshihiko Ogura; Miao Zhang; Peihui Lin; Zui Pan; Shinji Komazaki; Kazuhiro Kato; Miyuki Nishi; Xiaoli Zhao; Noah Weisleder; Chikara Sato; Jianjie Ma; Hiroshi Takeshima

Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15u2009years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ ‘spark’ signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.


Journal of Cell Biology | 2006

Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release

Noah Weisleder; Marco Brotto; Shinji Komazaki; Zui Pan; Xiaoli Zhao; Thomas M. Nosek; Jerome Parness; Hiroshi Takeshima; Jianjie Ma

Reduced homeostatic capacity for intracellular Ca2+ ([Ca2+]i) movement may underlie the progression of sarcopenia and contractile dysfunction during muscle aging. We report two alterations to Ca2+ homeostasis in skeletal muscle that are associated with aging. Ca2+ sparks, which are the elemental units of Ca2+ release from sarcoplasmic reticulum, are silent under resting conditions in young muscle, yet activate in a dynamic manner upon deformation of membrane structures. The dynamic nature of Ca2+ sparks appears to be lost in aged skeletal muscle. Using repetitive voltage stimulation on isolated muscle preparations, we identify a segregated [Ca2+]i reserve that uncouples from the normal excitation–contraction process in aged skeletal muscle. Similar phenotypes are observed in adolescent muscle null for a synaptophysin-family protein named mitsugumin-29 (MG29) that is involved in maintenance of muscle membrane ultrastructure and Ca2+ signaling. This finding, coupled with decreased expression of MG29 in aged skeletal muscle, suggests that MG29 expression is important in maintaining skeletal muscle Ca2+ homeostasis during aging.


Journal of Biological Chemistry | 2006

Azumolene Inhibits a Component of Store-operated Calcium Entry Coupled to the Skeletal Muscle Ryanodine Receptor

Xiaoli Zhao; Noah Weisleder; Xuehai Han; Zui Pan; Jerome Parness; Marco Brotto; Jianjie Ma

Dantrolene reduces the elevated myoplasmic Ca2+ generated during malignant hyperthermia, a pharmacogenetic crisis triggered by volatile anesthetics. Although specific binding of dantrolene to the type 1 ryanodine receptor (RyR1), the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum, has been demonstrated, there is little evidence for direct dantrolene inhibition of RyR1 channel function. Recent studies suggest store-operated Ca2+ entry (SOCE) contributes to skeletal muscle function, but the effect of dantrolene on this pathway has not been examined. Here we show that azumolene, an equipotent dantrolene analog, inhibits a component of SOCE coupled to activation of RyR1 by caffeine and ryanodine, whereas the SOCE component induced by thapsigargin is not affected. Our data suggest that azumolene distinguishes between two mechanisms of cellular signaling to SOCE in skeletal muscle, one that is coupled to and one independent from RyR1.


Science Translational Medicine | 2012

Recombinant MG53 protein modulates therapeutic cell membrane repair in treatment of muscular dystrophy

Noah Weisleder; Norio Takizawa; Peihui Lin; Xianhua Wang; Chunmei Cao; Yan Zhang; Tao Tan; Christopher Ferrante; H. Zhu; Pin-Jung Chen; Rosalie Yan; Matthew Sterling; Xiaoli Zhao; Moonsun Hwang; Miyuki Takeshima; Chuanxi Cai; Heping Cheng; Hiroshi Takeshima; Rui-Ping Xiao; Jianjie Ma

Recombinant human MG53 protein can increase membrane repair after injury in cells and can reduce pathology in animal models of muscle injury and muscular dystrophy. Mending Muscle To repair a torn muscle, one might require a little bit of ice and a lot of rest. For those with Duchenne muscular dystrophy (DMD), however, muscle degeneration is not as easily repaired, and patients ultimately experience difficulty standing, walking, and breathing. DMD results from a lack of the protein dystrophin, which is located at the cell membrane to help muscle fibers repair themselves. There is no cure for DMD, but Weisleder and colleagues have now shown that exogenous delivery of a different repair protein, Mitsugumin 53 (MG53), to cells can prevent muscle damage in cell culture and in mice. The authors first showed that muscle and nonmuscle cells treated with recombinant human MG53 (rhMG53) in vitro were resistant to mechanical, chemical, and photo damage because MG53 localized to the injury site and provided protection. In vivo, Weisleder and colleagues showed that dystrophin-deficient mdx mice treated intramuscularly or intravenously with rhMG53 displayed reduced muscle damage and decreased muscle pathology compared to saline-treated controls, even in the presence of a membrane-damaging toxin. This repair process also worked in muscle fibers isolated from mdx mice that were deficient in either of two natural repair proteins, MG53 or dysferlin, suggesting that exogenous delivery of rhMG53 works by a new mechanism—other than the intracellular machinery—to patch up damaged cell membrane. Soluble MG53 protein therapy could be a viable treatment for DMD that avoids the well-known limitations of dystrophin gene replacement therapy. Toward translation, Weisleder et al. have further demonstrated that exogenous MG53 is nontoxic and safe in animals. The ability of the protein to preserve muscle function and to enhance repair capacity in humans has yet to be shown, but additional studies in larger animals and human muscle fibers will give a clearer indication of its therapeutic potential. Mitsugumin 53 (MG53), a muscle-specific TRIM family protein, is an essential component of the cell membrane repair machinery. Here, we examined the translational value of targeting MG53 function in tissue repair and regenerative medicine. Although native MG53 protein is principally restricted to skeletal and cardiac muscle tissues, beneficial effects that protect against cellular injuries are present in nonmuscle cells with overexpression of MG53. In addition to the intracellular action of MG53, injury to the cell membrane exposes a signal that can be detected by MG53, allowing recombinant MG53 protein to repair membrane damage when provided in the extracellular space. Recombinant human MG53 (rhMG53) protein purified from Escherichia coli fermentation provided dose-dependent protection against chemical, mechanical, or ultraviolet-induced damage to both muscle and nonmuscle cells. Injection of rhMG53 through multiple routes decreased muscle pathology in the mdx dystrophic mouse model. Our data support the concept of targeted cell membrane repair in regenerative medicine, and present MG53 protein as an attractive biological reagent for restoration of membrane repair defects in human diseases.


Aging Cell | 2008

Compromised store-operated Ca2+ entry in aged skeletal muscle

Xiaoli Zhao; Noah Weisleder; Angela Thornton; Yaa Oppong; Rachel Campbell; Jianjie Ma; Marco Brotto

In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca2+ entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store‐operated Ca2+ entry (SOCE) in aged mouse skeletal muscle. Using Mn2+ quenching of Fura‐2 fluorescence and confocal‐microscopic imaging of Ca2+ movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26–27 months) as compared with those from young (2–5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin‐29, a synaptophysin‐related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin‐29 expression and reduced SOCE may contribute to the diminished intracellular Ca2+ homeostatic capacity generally associated with muscle aging.


Biophysical Journal | 2010

Increased Store-Operated Ca2+ Entry in Skeletal Muscle with Reduced Calsequestrin-1 Expression

Xiaoli Zhao; Choon Kee Min; Jae-Kyun Ko; Jerome Parness; Do Han Kim; Noah Weisleder; Jianjie Ma

Store-operated Ca(2+) entry (SOCE) contributes to Ca(2+) handling in normal skeletal muscle function, as well as the progression of muscular dystrophy and sarcopenia, yet the mechanisms underlying the change in SOCE in these states remain unclear. Previously we showed that calsequestrin-1 (CSQ1) participated in retrograde regulation of SOCE in cultured skeletal myotubes. In this study, we used small-hairpin RNA to determine whether knockdown of CSQ1 in adult mouse skeletal muscle can influence SOCE activity and muscle function. Small-hairpin RNA against CSQ1 was introduced into flexor digitorum brevis muscles using electroporation. Transfected fibers were isolated for SOCE measurements using the Mn(2+) fluorescence-quenching method. At room temperature, the SOCE induced by submaximal depletion of the SR Ca(2+) store was significantly enhanced in CSQ1-knockdown muscle fibers. When temperature of the bathing solution was increased to 39 degrees C, CSQ1-knockdown muscle fibers displayed a significant increase in Ca(2+) permeability across the surface membrane likely via the SOCE pathway, and a corresponding elevation in cytosolic Ca(2+) as compared to control fibers. Preincubation with azumolene, an analog of dantrolene used for the treatment of malignant hyperthermia (MH), suppressed the elevated SOCE in CSQ1-knockdown fibers. Because the CSQ1-knockout mice develop similar MH phenotypes, this inhibitory effect of azumolene on SOCE suggests that elevated extracellular Ca(2+) entry in skeletal muscle may be a key factor for the pathophysiological changes in intracellular Ca(2+) signaling in MH.


Biochemical and Biophysical Research Communications | 2011

Store-operated calcium entry is present in HL-1 cardiomyocytes and contributes to resting calcium

Chad D. Touchberry; Chris J. Elmore; Tien M. Nguyen; Jon Andresen; Xiaoli Zhao; Matthew Orange; Noah Weisleder; Marco Brotto; William C. Claycomb; Michael J. Wacker

Store-operated Ca(2+) entry (SOCE) has recently been shown to be of physiological and pathological importance in the heart, particularly during cardiac hypertrophy. However, measuring changes in intracellular Ca(2+) during SOCE is very difficult to study in adult primary cardiomyocytes. As a result there is a need for a stable and reliable in vitro model of SOCE which can be used to test cardiac drugs and investigate the role of SOCE in cardiac pathology. HL-1 cells are the only immortal cardiomyocyte cell line available that continuously divides and spontaneously contracts while maintaining phenotypic characteristics of the adult cardiomyocyte. To date the role of SOCE has not yet been investigated in the HL-1 cardiac cell line. We report for the first time that these cells expressed stromal interaction molecule 1 (STIM1) and the Ca(2+) release-activated Ca(2+) (CRAC) channel Orai1, which are essential components of the SOCE machinery. In addition, SOCE was tightly coupled to sarcoplasmic reticulum (SR)-Ca(2+) release in HL-1 cells, and such response was not impaired in the presence of voltage dependent Ca(2+) channels (L-type and T-type channels) or reverse mode Na(+)/Ca(2+) exchanger (NCX) inhibitors. We were able to abolish the SOCE response with known SOCE inhibitors (BTP-2 and SKF-96365) and by targeted knockdown of Orai1 with RNAi. In addition, knockdown of Orai1 resulted in lower baseline Ca(2+) and an attenuated response to thapsigargin (TG) and caffeine, indicating that SOCE may play a role in Ca(2+) homeostasis during unstressed conditions in cardiomyocytes. Currently, there is little knowledge about SOCE in cardiomyocytes, and the present results suggest that HL-1 cells will be of great utility in investigating the role of SOCE in the heart.


Journal of Biological Chemistry | 2010

Ca2+ Overload and Sarcoplasmic Reticulum Instability in tric-a Null Skeletal Muscle

Xiaoli Zhao; Daiju Yamazaki; Ki Ho Park; Shinji Komazaki; Andoria Tjondrokoesoemo; Miyuki Nishi; Peihui Lin; Yutaka Hirata; Marco Brotto; Hiroshi Takeshima; Jianjie Ma

The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl−, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions.

Collaboration


Dive into the Xiaoli Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Brotto

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zui Pan

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Shinji Komazaki

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge