Xiaolian Sun
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaolian Sun.
Journal of the American Chemical Society | 2013
Wenlei Zhu; Ronald Michalsky; Önder Metin; Haifeng Lv; Shaojun Guo; Christopher J. Wright; Xiaolian Sun; Andrew A. Peterson; Shouheng Sun
We report selective electrocatalytic reduction of carbon dioxide to carbon monoxide on gold nanoparticles (NPs) in 0.5 M KHCO3 at 25 °C. Among monodisperse 4, 6, 8, and 10 nm NPs tested, the 8 nm Au NPs show the maximum Faradaic efficiency (FE) (up to 90% at -0.67 V vs reversible hydrogen electrode, RHE). Density functional theory calculations suggest that more edge sites (active for CO evolution) than corner sites (active for the competitive H2 evolution reaction) on the Au NP surface facilitates the stabilization of the reduction intermediates, such as COOH*, and the formation of CO. This mechanism is further supported by the fact that Au NPs embedded in a matrix of butyl-3-methylimidazolium hexafluorophosphate for more efficient COOH* stabilization exhibit even higher reaction activity (3 A/g mass activity) and selectivity (97% FE) at -0.52 V (vs RHE). The work demonstrates the great potentials of using monodisperse Au NPs to optimize the available reaction intermediate binding sites for efficient and selective electrocatalytic reduction of CO2 to CO.
Angewandte Chemie | 2013
Peng Huang; Jing Lin; Wanwan Li; Pengfei Rong; Zhe Wang; Shouju Wang; Xiaoping Wang; Xiaolian Sun; Maria A. Aronova; Gang Niu; Richard D. Leapman; Zhihong Nie; Xiaoyuan Chen
The hierarchical assembly of gold nanoparticles (GNPs) allows the localized surface plasmon resonance peaks to be engineered to the near-infrared (NIR) region for enhanced photothermal therapy (PTT). Herein we report a novel theranostic platform based on biodegradable plasmonic gold nanovesicles for photoacoustic (PA) imaging and PTT. The disulfide bond at the terminus of a PEG-b-PCL block-copolymer graft enables dense packing of GNPs during the assembly process and induces ultrastrong plasmonic coupling between adjacent GNPs. The strong NIR absorption induced by plasmon coupling and very high photothermal conversion efficiency (η=37%) enable simultaneous thermal/PA imaging and enhanced PTT efficacy with improved clearance of the dissociated particles after the completion of PTT. The assembly of various nanocrystals with tailored optical, magnetic, and electronic properties into vesicle architectures opens new possibilities for the construction of multifunctional biodegradable platforms for biomedical applications.
Journal of the American Chemical Society | 2011
Shaojun Guo; Sen Zhang; Xiaolian Sun; Shouheng Sun
We report a facile synthesis of ultrathin (2.5 nm) trimetallic FePtPd alloy nanowires (NWs) with tunable compositions and controlled length (<100 nm). The NWs were made by thermal decomposition of Fe(CO)(5) and sequential reduction of Pt(acac)(2) (acac = acetylacetonate) and Pd(acac)(2) at temperatures from 160 to 240 °C. These FePtPd NWs showed composition-dependent catalytic activity and stability for methanol oxidation reaction. Among FePtPd and FePt NWs as well as Pd, Pt, and PtPd nanoparticles (NPs) studied in 0.2 M methanol and 0.1 M HClO(4) solution, the Fe(28)Pt(38)Pd(34) NWs showed the highest activity, with their mass current density reaching 488.7 mA/mg Pt and peak potential for methanol oxidation decreasing to 0.614 V from 0.665 V (Pt NP catalyst). The NW catalysts were also more stable than the NP catalysts, with the Fe(28)Pt(38)Pd(34) NWs retaining the highest mass current density (98.1 mA/mg Pt) after a 2 h current-time test at 0.4 V. These trimetallic NWs are a promising new class of catalyst for methanol oxidation reaction and for direct methanol fuel cell applications.
Nano Letters | 2012
Xiaolian Sun; Shaojun Guo; Yi Liu; Shouheng Sun
Dumbbell-like Pt(x)Pd(100-x)-Fe(3)O(4) nanoparticles (NPs) were synthesized and studied for electrocatalytic reduction and sensing of H(2)O(2). In 0.1 M phosphate buffered saline (PBS) solution, the 4-10 nm Pt(x)Pd(100-x)-Fe(3)O(4) NPs showed the Pt/Pd composition-dependent catalysis with Pt(48)Pd(52)-Fe(3)O(4) NPs having the best activity. The Pt(48)Pd(52)-Fe(3)O(4) NPs were tested for H(2)O(2) detection, and their H(2)O(2) detection limit reached 5 nM, which was suitable for monitoring H(2)O(2) generated from Raw 264.7 cells. These dumbbell-like PtPd-Fe(3)O(4) NPs are the most sensitive probe ever reported and can be used to achieve real-time quantitative detection of H(2)O(2) in biological environment for biological and biomedical applications.
Journal of the American Chemical Society | 2014
Xiaolian Sun; Dongguo Li; Yong Ding; Wenlei Zhu; Shaojun Guo; Zhong Lin Wang; Shouheng Sun
We report a facile synthesis of monodisperse core/shell 5/1.5 nm Au/CuPt nanoparticles by coreduction of platinum acetylacetonate and copper acetylacetonate in the presence of 5 nm Au nanoparticles. The CuPt alloy effect and core/shell interactions make these Au/CuPt nanoparticles a promising catalyst for both oxygen reduction reaction and methanol oxidation reaction in 0.1 M HClO4 solution. Their specific (mass) reduction and oxidation activities reach 2.72 mA/cm(2) (1500 mA/mg Pt) at 0.9 V and 0.755 mA/cm(2) (441 mA/mg Pt) at 0.8 V (vs reversible hydrogen electrode), respectively. Our studies show that the existence of the Au nanoparticle core not only minimizes the Pt usage but also improves the stability of the Au/CuPt catalyst for fuel cell reactions. The results suggest that the core/shell design is indeed effective for optimizing nanoparticle catalysis. The same concept may be extended to other multimetallic nanoparticle systems, making it possible to tune nanoparticle catalysis for many different chemical reactions.
Nano Letters | 2011
Lise-Marie Lacroix; Natalie Frey Huls; Don N. Ho; Xiaolian Sun; Kai Cheng; Shouheng Sun
We report a facile synthesis of body centered cubic (bcc) Fe nanoparticles (NPs) via the thermal decomposition of iron pentacarbonyl, Fe(CO)(5), in the presence of hexadecylammonium chloride. These bcc-Fe NPs exhibit a drastically increased stability and magnetic moment (M(s) = 164 A·m(2)·kg(-1)(Fe)) even in physiological solutions, and have much enhanced magnetic imaging contrast (r(2) = 220 s(-1)·mM(-1)) and heating (SAR = 140 W·g(-1)(Fe)) effects. They may serve as robust probes for imaging and therapeutic applications.
Advanced Materials | 2013
Xiaolian Sun; Shaojun Guo; Chun-Shiang Chung; Wenlei Zhu; Shouheng Sun
Dumbbell-like Pt(48)Pd(52)-Fe(3)O(4) nanoparticles are synthesized and functionalized with oleylamine-polyethyleneglycol to serve as an efficient catalyst for H(2)O(2) reduction and tetramethylbenzidine (TMB) oxidation in biological solutions. The Pt(48)Pd(52)-Fe(3)O(4)/TMB kit is even more active than the natural enzyme for H(2)O(2) detection with a detection limit reaching 2 μM, and is successfully used to quantitatively monitor the extracellular H(2)O(2) generated by neutrophils.
ACS Nano | 2013
Dingbin Liu; Xinglu Huang; Zhantong Wang; Albert J. Jin; Xiaolian Sun; Zhu L; Fu Wang; Ying Ma; Gang Niu; Hight Walker Ar; Xiaoyuan Chen
It is still in high demand to develop extremely sensitive and accurate clinical tools for biomarkers of interest for early diagnosis and monitoring of diseases. In this report, we present a highly sensitive and compatible gold nanoparticle (AuNP)-based fluorescence-activatable probe for sensing ultralow levels of prostate-specific antigen (PSA) in patient serum samples. The limit of detection of the newly developed probe for PSA was pushed down to 0.032 pg/mL, which is more than 2 orders of magnitude lower than that of the conventional fluorescence probe. The ultrahigh sensitivity of this probe was attributed to the high loading efficiency of the dyes on AuNP surfaces and high fluorescence quenching-unquenching abilities of the dye-AuNP pairs. The efficiency and robustness of this probe were investigated in patient serum samples, demonstrating the great potential of this probe in real-world applications.
Nano Letters | 2012
Xiaolian Sun; Natalie Frey Huls; Aruna Sigdel; Shouheng Sun
Monodisperse 35 nm FeO nanoparticles (NPs) were synthesized and oxidized in a dry air atmosphere into core/shell FeO/Fe(3)O(4) NPs with both FeO core and Fe(3)O(4) shell dimensions controlled by reaction temperature and time. Temperature-dependent magnetic properties were studied on FeO/Fe(3)O(4) NPs obtained from the FeO NPs oxidized at 60 and 100 °C for 30 min. A large exchange bias (shift in the hysteresis loop) was observed in these core/shell NPs. The relative dimensions of the core and shell determine not only the coercivity and exchange field but also the dominant reversal mechanism of the ferrimagnetic Fe(3)O(4) component. This is the first time demonstration of tuning exchange bias and of controlling asymmetric magnetization reversal in FeO/Fe(3)O(4) NPs with antiferromagnetic core and ferrimagnetic shell.
Advanced Materials | 2015
Jibin Song; Xiangyu Yang; Orit Jacobson; Peng Huang; Xiaolian Sun; Lisen Lin; Xuefeng Yan; Gang Niu; Qingjie Ma; Xiaoyuan Chen
A new kind of ultrasmall dissociable AuNR@PEG/PLGA vesicles (≈60 nm) (AuNR = gold nanorod; PEG = poly(ethylene glycol); PLGA = poly(lactic-co-glycolic acid)) assembled from small AuNRs (dimension: ≈8 nm × 2 nm) is reported. They exhibit several striking features: prolonged circulation and prominent tumor accumulation; rapid excretion from the body as AuNR@PEG after therapy; enhanced photoacoustic and photo thermal properties; and high photothermal cancer therapy efficacy.