Xiaolong Lu
Tianjin Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaolong Lu.
Membranes | 2014
Qinglei Zhang; Xiaolong Lu; Lihua Zhao
In this study, the polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were prepared by non-solvent induced phase separation (NIPS). The influences of PVDF membrane thickness and polyethylene glycol (PEG) content on membrane morphologies, pore size, mechanical and permeable performance were investigated. It was found that membrane thickness and PEG content affected both the structure and performance of hollow fiber membranes. The tensile strength and rejection of bovine serum albumin (BSA) increased with increasing membrane thickness, while the Ultrafiltration flux (UF) flux of pure water was the opposite. The tensile strength, porosity and rejection of BSA increased with increasing PEG content within a certain range. Compared with commercial F60S membrane, the PVDF hollow fiber membrane showed higher mechanical and permeable performance. It was proven that PVDF material had better hydrophilicity and lower BSA adsorption, which was more suitable for hemodialysis. All the results indicate that PVDF hollow fiber membrane is promising as a hemodialysis membrane.
Membranes | 2013
Jie Liu; Xiaolong Lu; Chunrui Wu
Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites.
Journal of Polymer Research | 2014
Jing-Hui Liu; Xiaolong Lu; Jinghong Li; Chunrui Wu
Tensile strength is of paramount importance to poly (vinylidene fluoride) (PVDF) membranes in expanding their industrial application. In this paper, porous PVDF membranes with higher tensile strength were prepared by the low temperature thermally induced phase separation (LT-TIPS) method. The effects of mixed diluents (MD) composition on the morphology, polymorphism, and tensile strength of such prepared flat sheet membranes were investigated. The competition of membrane formation mechanisms between the nonsolvent induced phase separation (NIPS) and TIPS was demonstrated by observing the membrane morphology in the LT-TIPS process. It was found that the tensile strength was improved by suppressing the formation of finger-like macrovoids and spherulitic morphologies through adjusting the composition of MD. PVDF crystallized into α phase for all the investigated cases, and as the MD became poorer, the total crystallinity increased slightly. Based on these experimental results, PVDF hollow fiber membranes were fabricated via LT-TIPS. The influences of MD composition and polymer concentration on the morphology, water permeability and tensile strength of the formed hollow fiber membranes were studied. The properties of optimized hollow fiber membranes associated with the surface and cross-section morphologies were promising and the performance can be further enhanced in future work.
Journal of Materials Chemistry | 2017
Sihua Liu; Chunrui Wu; Wei-Song Hung; Xiaolong Lu; Kueir-Rarn Lee
Preparation of nanofiltration membranes (NFMs) with high rejection to both divalent cations and anions and simultaneous high water permeation is rather significant and highly desired. Herein, we engineered an ultrathin Janus polyamide (PA) separating layer with opposite charges in one step through the “self-regulation” process of low temperature interfacial polymerization (LTIP). The low temperature strategy plays a crucial role in optimizing the “self-regulation” process. It can reduce the transmission rate of aqueous monomers to the top reaction zone and thus the thickness of the reaction zone, resulting in an ultrathin Janus PA separating layer. Owing to the collaborative separation effect and reduced thickness of the Janus separating layer, our NFMs exhibit excellent comprehensive separation performance with high rejection to both divalent cations and anions and desirable water permeation, simultaneously, which exceeds the separation performance upper bound of state-of-the-art NFMs. Furthermore, these NFMs show outstanding anti-fouling performance owing to the uniform and smooth upper surface. The methodology reported here is easy to couple with current commercialized interfacial polymerization technology, making up-scaling feasible.
Desalination and Water Treatment | 2016
Chunrui Wu; Zhengang Li; Xuemei Su; Yue Jia; Xiaolong Lu
Perlite particles were used as filter aid and added directly into the feed solution. A loose filter aid layer was formed on the membrane surface during ultrafiltration (UF) process. The layer could...
Membranes | 2015
Qinglei Zhang; Xiaolong Lu; Juanjuan Liu; Lihua Zhao
In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%.
Biomedizinische Technik | 2017
Qinglei Zhang; Xiaolong Lu; Yang S; Lihua Zhao
Abstract In this study, polyvinylidene fluoride (PVDF) hollow fiber membranes (HFMs) were modified by coating with polyvinyl alcohol (PVA) and chitosan. The influences of PVA and chitosan amount on PVDF membrane mechanical and separation performance were investigated. The results showed that the modified PVDF membranes had better mechanical and separation performance when the amount of PVA and chitosan was 20 mg/m2. At the same time, the biocompatibility of PVDF membranes was also investigated. Compared with virgin PVDF membranes, the modified PVDF membranes showed better anticoagulation, hydrophilicity, less bovine serum albumin (BSA) adsorption, and lower hemolytic ratio. The anticoagulation behavior of modified PVDF membranes coating with PVA had been obviously improved. Prothrombin time (PT) and activated partial thromboplastin time (APTT) of the modified PVDF membrane are 44.8 s and 72.5 s while the PT and APTT of virgin PVDF membrane are 15.6 s and 37.3 s. The advancing water contact angle (WCA) and BSA adsorption of the modified PVDF membrane coating with PVA are 24° and 23 mg/m2 while virgin PVDF membrane is 52° and 49 mg/m2. However, further biocompatibility evaluation is needed to obtain a more comprehensive conclusion.
Separation Science and Technology | 2017
Qianqian Chen; Zhiyu Liu; Xiaolong Lu; Zhong Ma
ABSTRACT In order to reduce energy consumption and control membrane fouling, a novel submerged membrane separation process was developed in this paper. In this design, the traditional aeration device was replaced by a low-power motor. Through the traction force produced by the motor, the membrane module can move up and down in the water. In this case, friction will be created between the membrane surface and the water, which can prevent the deposition of pollutants on the membrane surfaces and then control membrane fouling. After a 64-min filtration operation, compared with the aeration process, the cake-layer resistance of the lifting process reduced by about 13.6%. For a 120-min filtration operation, the transmembrane pressure (TMP) of the lifting process was 11.1% lower than that of the aeration process at the end of filtration. According to the long-time operation, the stable running time was increased from 352 min of the aeration process to 408 min of the lifting process. All these suggest that the novel lifting process can control membrane fouling more effectively than the aeration process. Therefore, the lifting process is an efficient and feasible membrane separation technology.
Biomedizinische Technik | 2016
Qinglei Zhang; Xiaolong Lu; Lihua Zhao; Juanjuan Liu; Chunfeng Wu
Abstract In this study, polyvinylidene fluoride (PVDF) hollow-fiber hemodialysis membranes were prepared by non-solvent-induced phase separation. The PVDF hollow-fiber hemodialyzers were prepared by centrifugal casting. The results showed that the PVDF membrane had better mechanical and separation properties when the membrane wall thickness was 40 μm and the N,N-dimethylacetamide in the core was 70 Vol%. Compared with commercial polysulfone hemodialysis membrane (Fresenius F60S membrane), the PVDF membrane had better mechanical property and ultrafiltration (UF) flux of pure water. The PVDF dialyzer’s removal efficiency for middle molecules was proven to be much higher than that of the F60S dialyzer. The UF coefficient of a high-flux PVDF dialyzer is 62.6 ml/h/mm Hg, whereas F60S is 42.5 ml/h/mm Hg, which can promote clearance for middle molecules.
Journal of Membrane Science | 2008
Xianfeng Li; Yonggang Wang; Xiaolong Lu; Changfa Xiao