Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaolong Yan is active.

Publication


Featured researches published by Xiaolong Yan.


Journal of Surgical Research | 2011

Glycyrrhizin treatment is associated with attenuation of lipopolysaccharide-induced acute lung injury by inhibiting cyclooxygenase-2 and inducible nitric oxide synthase expression.

Yunfeng Ni; Jianke Kuai; Zifan Lu; Guodong Yang; Haiyan Fu; Jian Wang; Feng Tian; Xiaolong Yan; Yachao Zhao; Yunjie Wang; Tao Jiang

Glycyrrhizin (GL), a major active constituent of licorice root, has been attributed numerous pharmacologic effects, including anti-inflammatory, anti-viral, anti-tumor, and hepatoprotective activities. In this study, we investigated the anti-inflammatory effect of GL on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in Balb/c mice by intratracheal instillation of LPS (1 mg/kg). Before 1 h of LPS administration, the mice received intraperitoneal injection of GL at varied doses (10, 25, and 50 mg/kg). The severity of pulmonary injury was evaluated 12 h after LPS administration. GL pretreatment led to significant attenuation of LPS induced evident lung histopathologic changes, alveolar hemorrhage, and neutrophil infiltration with evidence of reduced myeloperoxidase (MPO) activity. The lung wet/dry weight ratios, as an index of lung edema, were markedly reduced by GL pretreatment. The concentrations of pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α were elevated in bronchoalveolar lavage fluid (BALF) after LPS administration, which were significantly inhibited by GL pretreatment. GL pretreatment also reduced the concentrations of nitric oxide (NO) in lung tissues. Furthermore, the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was suppressed by GL pretreatment. In conclusion, GL potently protected against LPS-induced ALI, and the protective effects of GL may attribute partly to the suppression of COX-2 and iNOS expression.


Bioelectromagnetics | 2009

Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs.

Xiaolong Yan; Jing Han; Zhipei Zhang; Jian Wang; Qingshu Cheng; Kunxiang Gao; Yunfeng Ni; Yunjie Wang

Endogenous direct-current electric fields (dcEFs) occur in vivo in the form of epithelial transcellular potentials or neuronal field potentials. A variety of cells respond to dcEFs by migrating directionally, and this is termed galvanotaxis. The mechanism by which dcEFs direct cell movement, however, is not yet understood, and the effects on lung cancer cells are entirely unknown. We demonstrated that cultured human lung adenocarcinoma A549 cells migrate toward the cathode in applied dcEFs at 3 V/cm. Fluorescence microscopy showed that both epidermal growth factor receptors (EGFRs) and F-actin are polarized to the cathode. EGFR inhibitors, cetuximab and AG1478, reduced the migration rate and directed motility in dcEFs. Western blots showed that ERK and AKT signaling pathways were prominently promoted by dcEFs. EGFR inhibitors could reduce this promotion but not completely. These data suggest that polarization of EGFRs and the activation of their downstream signals play an important role in the galvanotaxis of A549 cells in dcEFs.


Respiratory Research | 2010

Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice.

Yunfeng Ni; Jian Wang; Xiaolong Yan; Feng Tian; Jinbo Zhao; Yunjie Wang; Tao Jiang

BackgroundHistone deacetylase (HDAC) inhibitors, developed as promising anti-tumor drugs, exhibit their anti-inflammatory properties due to their effects on reduction of inflammatory cytokines.ObjectiveTo investigate the protective effect of butyrate, a HDAC inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice.MethodsALI was induced in Balb/c mice by intratracheally instillation of LPS (1 mg/kg). Before 1 hour of LPS administration, the mice received butyrate (10 mg/kg) orally. The animals in each group were sacrificed at different time point after LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) and concentrations of nitric oxide (NO) and myeloperoxidase (MPO) activity in lung tissue homogenates were measured by enzyme-linked immunosorbent assay (ELISA). Expression of nuclear factor (NF)-κB p65 in cytoplasm and nucleus was determined by Western blot analysis respectively.ResultsPretreatment with butyrate led to significant attenuation of LPS induced evident lung histopathological changes, alveolar hemorrhage, and neutrophils infiltration with evidence of reduced MPO activity. The lung wet/dry weight ratios, as an index of lung edema, were reduced by butyrate administration. Butyrate also repressed the production of TNF-α, IL-1β and NO. Furthermore, the expression of NF-κB p65 in nucleus was markedly suppressed by butyrate pretreatment.ConclusionsButyrate had a protective effect on LPS-induced ALI, which may be related to its effect on suppression of inflammatory cytokines production and NF-κB activation.


Journal of Pineal Research | 2016

Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling

Yushu Dong; Chongxi Fan; Wei Hu; Shuai Jiang; Zhiqiang Ma; Xiaolong Yan; Chao Deng; Shouyin Di; Zhenlong Xin; Guiling Wu; Yang Yang; Russel J. Reiter; Guobiao Liang

Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Nucleotide‐binding oligomerization domain‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome activation associated with the upregulation of apoptotic signaling pathway has been implicated in various inflammatory diseases including hemorrhagic insults. Melatonin is reported to possess substantial anti‐inflammatory properties, which is beneficial for early brain injury (EBI) after SAH. However, the molecular mechanisms have not been clearly identified. This study was designed to investigate the protective effects of melatonin against EBI induced by SAH and to elucidate the potential mechanisms. The adult mice were subjected to SAH. Melatonin or vehicle was injected intraperitoneally 2 hr after SAH. Melatonin was neuroprotective, as shown by increased survival rate, as well as elevated neurological score, greater survival of neurons, preserved brain glutathione levels, and reduced brain edema, malondialdehyde concentrations, apoptotic ratio, and blood–brain barrier (BBB) disruption. Melatonin also attenuated the expressions of NLRP3, apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC), cleaved caspase‐1, interleukin‐1β (IL‐1β), and interleukin‐6 (IL‐6); these changes were also associated with an increase in the anti‐apoptotic factor (Bcl2) and reduction in the pro‐apoptotic factor (Bim). In summary, our results demonstrate that melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome‐associated apoptosis.


Journal of Pineal Research | 2015

HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways

Chongxi Fan; Yunhu Pan; Yang Yang; Shouyin Di; Shuai Jiang; Zhiqiang Ma; Zhipei Zhang; Weimiao Li; Xiaofei Li; Russel J. Reiter; Xiaolong Yan

Melatonin is an indoleamine synthesized in the pineal gland that shows a wide range of physiological and pharmacological functions, including anticancer effects. In this study, we investigated the effect of melatonin on drug‐induced cellular apoptosis against the cultured human lung adenocarcinoma cells and explored the role of histone deacetylase (HDAC) signaling in this process. The results showed that melatonin treatment led to a dose‐ and time‐dependent decrease in the viability of human A549 and PC9 lung adenocarcinoma cells. Additionally, melatonin exhibited potent anticancer activity in vitro, as evidenced by reductions of the cell adhesion, migration, and the intracellular glutathione (GSH) level and increases in the apoptotic index, caspase 3 activity, and reactive oxygen species (ROS) in A549 and PC9 cells. Melatonin treatment also influenced the expression of HDAC‐related molecules (HDAC1 and Ac‐histone H3), upregulated the apoptosis‐related molecules (PUMA and Bax), and downregulated the proliferation‐related molecule (PCNA) and the anti‐apoptosis‐related molecule (Bcl2). Furthermore, the inhibition of HDAC signaling using HDAC1 siRNA or SAHA (a potent pan‐inhibitor of HDACs) sensitized A549 and PC9 cells to the melatonin treatment. In summary, these data indicate that in vitro‐administered melatonin is a potential suppressor of lung adenocarcinoma cells by the targeting of HDAC signaling and suggest that melatonin in combination with HDAC inhibitors may be a novel therapeutic intervention for human lung adenocarcinoma.


International Journal of Molecular Sciences | 2013

EGFR mutations in surgically resected fresh specimens from 697 consecutive Chinese patients with non-small cell lung cancer and their relationships with clinical features.

Yuanyang Lai; Zhipei Zhang; Jianzhong Li; Dong Sun; Yong’an Zhou; Tao Jiang; Yong Han; Lijun Huang; Yifang Zhu; Xiaofei Li; Xiaolong Yan

We aimed to reveal the true status of epidermal growth factor receptor (EGFR) mutations in Chinese patients with non-small cell lung cancer (NSCLC) after lung resections. EGFR mutations of surgically resected fresh tumor samples from 697 Chinese NSCLC patients were analyzed by Amplification Refractory Mutation System (ARMS). Correlations between EGFR mutation hotspots and clinical features were also explored. Of the 697 NSCLC patients, 235 (33.7%) patients had tyrosine kinase inhibitor (TKIs) sensitive EGFR mutations in 41 (14.5%) of the 282 squamous carcinomas, 155 (52.9%) of the 293 adenocarcinomas, 34 (39.5%) of the 86 adenosquamous carcinomas, one (9.1%) of the 11 large-cell carcinomas, 2 (11.1%) of the 18 sarcomatoid carcinomas, and 2 (28.6%) of the 7 mucoepidermoid carcinomas. TKIs sensitive EGFR mutations were more frequently found in female patients (p < 0.001), non-smokers (p = 0.047) and adenocarcinomas (p < 0.001). The rates of exon 19 deletion mutation (19-del), exon 21 L858R point mutation (L858R), exon 21 L861Q point mutation (L861Q), exon 18 G719X point mutations (G719X, including G719C, G719S, G719A) were 43.4%, 48.1%, 1.7% and 6.8%, respectively. Exon 20 T790M point mutation (T790M) was detected in 3 squamous carcinomas and 3 adenocarcinomas and exon 20 insertion mutation (20-ins) was detected in 2 patients with adenocarcinoma. Our results show the rates of EGFR mutations are higher in all types of NSCLC in Chinese patients. 19-del and L858R are two of the more frequent mutations. EGFR mutation detection should be performed as a routine postoperative examination in Chinese NSCLC patients.


Journal of Pineal Research | 2016

Melatonin reverses flow shear stress-induced injury in bone marrow mesenchymal stem cells via activation of AMP-activated protein kinase signaling

Yang Yang; Chongxi Fan; Chao Deng; Lin Zhao; Wei Hu; Shouyin Di; Zhiqiang Ma; Yu Zhang; Zhigang Qin; Zhenxiao Jin; Xiaolong Yan; Shuai Jiang; Yang Sun; Wei Yi

Tissue‐engineered heart valves (TEHVs) are a promising treatment for valvular heart disease, although their application is limited by high flow shear stress (FSS). Melatonin has a wide range of physiological functions and is currently under clinical investigation for expanded applications; moreover, extensive protective effects on the cardiovascular system have been reported. In this study, we investigated the protection conferred by melatonin supplementation against FSS‐induced injury in bone marrow mesenchymal stem cells (BMSCs) and elucidated the potential mechanism in this process. Melatonin markedly reduced BMSC apoptotic death in a concentration‐dependent manner while increasing the levels of transforming growth factor β (TGF‐β), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet‐derived growth factor (PDGF) and B‐cell lymphoma 2 (Bcl2), and decreasing those of Bcl‐2‐associated X protein (Bax), p53 upregulated modulator of apoptosis (PUMA), and caspase 3. Notably, melatonin exerted its protective effects by upregulating the phosphorylation of adenosine monophosphate‐activated protein kinase (AMPK), which promotes acetyl‐CoA carboxylase (ACC) phosphorylation. Further molecular experiments revealed that luzindole, a nonselective antagonist of melatonin receptors, blocked the anti‐FSS injury (anti‐FSSI) effects of melatonin. Inhibition of AMPK by Compound C also counteracted the protective effects of melatonin, suggesting that melatonin reverses FSSI in BMSCs through the AMPK‐dependent pathway. Overall, our findings indicate that melatonin contributes to the amelioration of FSS‐induced BMSC injury by activating melatonin receptors and AMPK/ACC signaling. Our findings may provide a basis for the design of more effective strategies that promote the use of TEHCs in patients.


Scientific Reports | 2016

Icariin displays anticancer activity against human esophageal cancer cells via regulating endoplasmic reticulum stress-mediated apoptotic signaling

Chongxi Fan; Yang Yang; Yong Liu; Shuai Jiang; Shouyin Di; Wei Hu; Zhiqiang Ma; Yifang Zhu; Zhenlong Xin; Guiling Wu; Jing Han; Xiaofei Li; Xiaolong Yan

In this study, we investigated the antitumor activity of icariin (ICA) in human esophageal squamous cell carcinoma (ESCC) in vitro and in vivo and explored the role of endoplasmic reticulum stress (ERS) signaling in this activity. ICA treatment resulted in a dose- and time-dependent decrease in the viability of human EC109 and TE1 ESCCs. Additionally, ICA exhibited strong antitumor activity, as evidenced by reductions in cell migration, adhesion, and intracellular glutathione (GSH) levels and by increases in the EC109 and TE1 cell apoptotic index, Caspase 9 activity, reactive oxygen species (ROS) level, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Furthermore, ICA treatments upregulated the levels of ERS-related molecules (p-PERK, GRP78, ATF4, p-eIF2α, and CHOP) and a pro-apoptotic protein (PUMA) and simultaneously downregulated an anti-apoptotic protein (Bcl2) in the two ESCC cell lines. The downregulation of ERS signaling using eIF2α siRNA desensitized EC109 and TE1 cells to ICA treatment, and the upregulation of ERS signaling using thapsigargin sensitized EC109 and TE1 cells to ICA treatment. In summary, ERS activation may represent a mechanism of action for the anticancer activity of ICA in ESCCs, and the activation of ERS signaling may represent a novel therapeutic intervention for human esophageal cancer.


Progress in Neurobiology | 2016

The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke.

Zhenxing Liang; Guiling Wu; Chongxi Fan; Jing Xu; Shuai Jiang; Xiaolong Yan; Shouyin Di; Zhiqiang Ma; Wei Hu; Yang Yang

Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling. This signaling is typically generated at cell surface receptors, the activation of which results in the translocation of STATs to the nucleus. STATs are involved in biological events as diverse as embryonic development, programmed cell death, organogenesis, innate immunity, adaptive immunity and cell growth regulation in organisms ranging from slime molds to insects to humans. Numerous studies have demonstrated the activation of STAT3 in neurological diseases, particularly in cerebral ischemic and hemorrhagic stroke. Additionally, STAT3 has also been reported to play a critical role in neuroprotective therapies. In light of the pleiotropic effects of STAT3 on the nervous system, we present the elaborate network of roles that STAT3 plays in cerebral ischemia and hemorrhage in this review. First, we introduce basic knowledge regarding STAT3 and briefly summarize the activation, inactivation, and regulation of the STAT3 pathway. Next, we describe the activation of STAT3 following cerebral ischemia and hemorrhage. Subsequently, we discuss the physiopathological roles of STAT3 in cerebral ischemia and hemorrhage. Moreover, we summarize several significant cerebral ischemic and hemorrhagic stroke treatments that target the STAT3 signaling pathway, including pharmacological and physical therapies. Finally, we highlight research progress on STAT3 in stroke. This review presents the important roles of STAT3 in the nervous system and may contribute to the promotion of STAT3 as a new therapeutic target.


ACS Applied Materials & Interfaces | 2015

Sea-urchin-like Au nanocluster with surface-enhanced raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion.

Lei Wang; Ting Guo; Qiang Lu; Xiaolong Yan; Daixing Zhong; Zhipei Zhang; Yunfeng Ni; Yong Han; Daxiang Cui; Xiaofei Li; Lijun Huang

Somatic mutations in the epidermal growth factor receptor (EGFR) gene are common in patients with lung adenocarcinomas and are associated with sensitivity to the small-molecule tyrosine kinase inhibitors (TKIs). For 10%-50% of the patients who experienced malignant pleural effusion (MPE), pathological diagnosis might rely exclusively on finding lung cancer cells in the MPE. Current methods based on polymerase chain reaction were utilized to test EGFR mutation status of MPE samples, but the accuracy of the test data was very low, resulting in many patients losing the chance of TKIs treatment. Herein, we synthesized the sea-urchin-like Au nanocluster (AuNC) with an average diameter of 92.4 nm, composed of 15-nm nanopricks. By introducing abundant sharp nanopricks, the enhancement factor of AuNC reached at 1.97 × 10(7). After capped with crystal violet (CV), polyethylene glycol, and EGFR mutation specific antibody, the AuNC-EGFR had excellent surface-enhanced Raman scattering (SERS) activity and EGFR mutation targeted recognition capability in lung cancer cells. Characteristic SERS signal at 1617 cm(-1) of CV was linear correlation with the number of H1650 cells, demonstrating the minimum detection limit as 25 cells in a 1-mL suspension. The gold mass in single H1650 cells exposed to AuNC-E746_750 for 2 h ranged from 208.6 pg to 231.4 pg, which approximately corresponded to 56-62 AuNCs per cell. Furthermore, SERS was preclinically utilized to test EGFR mutation status in MPE samples from 35 patients with lung adenocarcinoma. Principal component analysis (PCA) and the support vector machine (SVM) algorithm were constructed for EGFR mutation diagnostic analysis, yielding an overall accuracy of 90.7%. SERS measurement based on sea-urchin-like AuNC was an efficient method for EGFR mutation detection in MPE, and it might show great potential in applications such as predicting gene typing of clinical lung cancer in the near future.

Collaboration


Dive into the Xiaolong Yan's collaboration.

Top Co-Authors

Avatar

Xiaofei Li

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yong Han

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qiang Lu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhipei Zhang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jian Wang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yunfeng Ni

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Lijun Huang

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chongxi Fan

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Shouyin Di

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yang Yang

Chinese Ministry of Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge