Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where omei Xia is active.

Publication


Featured researches published by omei Xia.


Kidney International | 2008

Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death

Thor Tejada; Paola Catanuto; Adeel Ijaz; Javier Varona Santos; Xiaomei Xia; P. Sanchez; N. Sanabria; Oliver Lenz; Sharon J. Elliot; Alessia Fornoni

Loss of podocytes by apoptosis characterizes the early stages of diabetic nephropathy. To examine its mechanism we studied glomeruli and podocytes isolated from db/db mice with early diabetic nephropathy and albuminuria. Phosphorylation of AKT (protein kinase B, a key survival protein) was found to be lower in the glomeruli of 12 week old db/db compared to db/+ mice. In vitro, insulin phosphorylated AKT solely in podocytes from db/+ mice. Serum deprivation and exposure to tumor necrosis factor-alpha significantly compromised cell viability in podocytes from db/db but not from db/+ mice, and this was associated with a significant decrease in AKT phosphorylation. Inhibition of AKT was necessary to achieve the same degree of cell death in db/+ podocytes. Our study shows that podocyte inability to respond to insulin and susceptibility to cell death may partially account for the decreased podocyte number seen in early diabetic nephropathy.


Kidney International | 2011

Testosterone and 17Β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice

Sophie Doublier; Enrico Lupia; Paola Catanuto; Simone Periera-Simon; Xiaomei Xia; Ken S. Korach; Mariana Berho; Sharon J. Elliot; Michael Karl

Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.


Kidney International | 2009

Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes.

Adeel Ijaz; Thor Tejada; Paola Catanuto; Xiaomei Xia; Sharon J. Elliot; Oliver Lenz; Alexandra Jauregui; Maria O. Saenz; R. D. Molano; Antonello Pileggi; Camillo Ricordi; Alessia Fornoni

C-jun N-terminal kinase (JNK) regulates both the development of insulin resistance and inflammation. Podocytes of the widely used db/db mouse model of diabetic nephropathy lose their ability to respond to insulin as albuminuria develops, in comparison to control db/+ mice. Here we tested whether JNK inhibition or its gene deletion would prevent albuminuria in experimental diabetes. Phosphorylated/total JNK was significantly increased in vivo in glomeruli of db/db compared to db/+ mice. Treatment of podocytes isolated from these two strains of mice with tumor necrosis factor-alpha caused greater phosphorylation of JNK in those obtained from diabetic animals. When db/db mice were treated with a cell-permeable TAT-JNK inhibitor peptide, their insulin sensitivity and glycemia significantly improved compared to controls. We induced diabetes in JNK1 knockout mice with streptozotocin and found that they had significantly better insulin sensitivity compared to diabetic wild-type or JNK2 knockout mice. Albuminuria was, however, worse in all mice treated with the JNK inhibitor and in diabetic JNK2 knockout mice compared to controls. Nephrin expression was also reduced in JNK inhibitor-treated mice compared to controls. A similar degree of mesangial expansion was found in all diabetic mice. Our study shows that targeting JNK to improve systemic insulin sensitivity does not necessarily prevent diabetic nephropathy.


Kidney International | 2009

17 Β-estradiol and tamoxifen upregulate estrogen receptor Β expression and control podocyte signaling pathways in a model of type 2 diabetes

Paola Catanuto; Sophie Doublier; Enrico Lupia; Alessia Fornoni; Mariana Berho; Michael Karl; Gary E. Striker; Xiaomei Xia; Sharon J. Elliot

Diabetic nephropathy remains one of the most important causes of end-stage renal disease. This is particularly true for women from racial/ethnic minorities. Although administration of 17beta-estradiol to diabetic animals has been shown to reduce extracellular matrix deposition in glomeruli and mesangial cells, effects on podocytes are lacking. Given that podocyte injury has been implicated as a factor leading to the progression of proteinuria and diabetic nephropathy, we treated db/db mice, a model of type 2 diabetic glomerulosclerosis, with 17beta-estradiol or tamoxifen to determine whether these treatments reduce podocyte injury and decrease glomerulosclerosis. We found that albumin excretion, glomerular volume, and extracellular matrix accumulation were decreased in these mice compared to placebo treatment. Podocytes isolated from all treatment groups were immortalized and these cell lines were found to express the podocyte markers WT-1, nephrin, and the TRPC6 cation channel. Tamoxifen and 17beta-estradiol treatment decreased podocyte transforming growth factor-beta mRNA expression but increased that of the estrogen receptor subtype beta protein. 17beta-estradiol, but not tamoxifen, treatment decreased extracellular-regulated kinase phosphorylation. These data, combined with improved albumin excretion, reduced glomerular size, and decreased matrix accumulation, suggest that both 17beta-estradiol and tamoxifen may protect podocytes against injury and therefore ameliorate diabetic nephropathy.


Journal of The American Society of Nephrology | 2006

Smoking Induces Glomerulosclerosis in Aging Estrogen-Deficient Mice through Cross-Talk between TGF-β1 and IGF-I Signaling Pathways

Sharon J. Elliot; Michael Karl; Mariana Berho; Xiaomei Xia; Simone Pereria-Simon; Diego G. Espinosa-Heidmann; Gary E. Striker

Smoking is a known risk factor for the progression of chronic kidney diseases. However, its independent contribution to the development of ESRD and the underlying molecular mechanism have not been well elucidated. Although the risk for ESRD is higher in postmenopausal women according to the US Renal Data System, the number of women who smoke is on the rise worldwide. Therefore, the effects of smoking and estrogen status on glomerular function and structure were studied in female B6 mice that were ovariectomized at 3 (young) and 15 mo (aged) of age. The mice received either 17beta-estradiol (E(2)) replacement or placebo (Pla) and were divided further into groups that were exposed to cigarette smoke (S) and not exposed (NS). Six months of exposure to smoke had no effect on young mice, although aging S/Pla mice exhibited a phenotype of increased albumin excretion associated with a moderately increased glomerular collagen type IV deposition compared with NS/Pla mice. S/Pla mice also had a two-fold increase in glomerular TGF-beta, Smad3, and IGF-I receptor mRNA expression compared with the NS group. Mesangial cells that were isolated from S/Pla mice had an increase of IGF-I receptor protein, and IGF-I stimulated a TGF-beta reporter construct promoter three-fold. This was blocked by pretreatment with a neutralizing antibody to IGF-I, LY294002 (phosphatidylinositol-3 kinase inhibitor) or a dominant negative Smad construct. In addition, Smad3 activation was stimulated by IGF-I and blocked by LY294002, suggesting cross-talk between Smad and the phosphatidylinositol-3 kinase/AKT pathways. The smoking phenotype was reversed by E(2) replacement. In conclusion, smoking induces a phenotype in E(2)-deficient mice that is characterized by activation and cross-talk between the TGF-beta1 and IGF-I signaling pathways.


Translational Research | 2015

Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis.

Jun Tashiro; Sharon J. Elliot; David J. Gerth; Xiaomei Xia; Simone Pereira-Simon; Rhea Choi; Paola Catanuto; Shahriar Shahzeidi; Rebecca L. Toonkel; Rahil H. Shah; Fadi Salem; Marilyn K. Glassberg

The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, whereas remaining irreversible in aged mice suggests that impairment of pulmonary regeneration and repair is associated with aging. Because mesenchymal stem cells (MSCs) may promote repair after injury, we postulated that differences in MSCs from aged mice may underlie postinjury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4 months) and old (22 months) male mice were infused 1 day after intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and α(v)-integrin messenger RNA (mRNA) expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs BLM controls. Lung mRNA expression of tumor necrosis factor-alpha was also decreased in aged BLM mice receiving young-donor ASCs vs BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor (IGF) receptor, and protein kinase B (AKT) activation compared with old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation.


Endocrinology | 2014

17β-Estradiol Replacement Reverses Age-Related Lung Disease in Estrogen-Deficient C57BL/6J Mice

Marilyn K. Glassberg; Rhea Choi; Vita Manzoli; Shahriar Shahzeidi; Peter Rauschkolb; Robert Voswinckel; Muddassir Aliniazee; Xiaomei Xia; Sharon J. Elliot

The role that estrogens play in the aging lung is poorly understood. Remodeling of the aging lung with thickening of the alveolar walls and reduction in the number of peripheral airways is well recognized. The present study was designed to address whether estrogen deficiency would affect age-associated changes in the lungs of female C57BL/6J mice. Lungs isolated from old mice (24 months old, estrogen-deficient) demonstrated decreased lung volume and decreased alveolar surface area. There was no difference in alveolar number in the lungs of old and young mice (6 months old, estrogen-replete). Estrogen replacement restored lung volume, alveolar surface area, and alveolar wall thickness to that of a young mouse. Estrogen receptor-α (ERα) protein expression increased without a change in ERβ protein expression in the lung tissue isolated from old mice. In the lungs of old mice, the number of apoptotic cells was increased as well as the activation of matrix metalloproteinase-2 and ERK. Young mice had the highest serum 17β-estradiol levels that decreased with age. Our data suggest that in the aging female mouse lung, estrogen deficiency and an increase of ERα expression lead to the development of an emphysematous phenotype. Estrogen replacement partially prevents these age-associated changes in the lung architecture by restoration of interalveolar septa. Understanding the role of estrogens in the remodeling of the lung during aging may facilitate interventions and therapies for aging-related lung disease in women.


Endocrinology | 2012

In vivo 17β-estradiol treatment contributes to podocyte actin stabilization in female db/db mice

Paola Catanuto; Alessia Fornoni; Simone Pereira-Simon; Fayi Wu; Kerry L. Burnstein; Xiaomei Xia; Francesco Conti; Andrea Lenzi; Sharon J. Elliot

We recently showed that 17β-estradiol (E(2)) treatment ameliorated type 2 diabetic glomerulosclerosis in mice in part by protecting podocyte structure and function. Progressive podocyte damage is characterized by foot process effacement, vacuolization, detachment of podocytes from the glomerular basement membrane, and apoptosis. In addition, podocytes are highly dependent on the preservation of their actin cytoskeleton to ensure proper function and survival. Because E(2) administration prevented podocyte damage in our study on diabetic db/db mice and has been shown to regulate both actin cytoskeleton and apoptosis in other cell types and tissues, we investigated whether actin remodeling and apoptosis were prevented in podocytes isolated from E(2)-treated diabetic db/db mice. We performed G-actin/F-actin assays, Western analysis for Hsp25 expression, Ras-related C(3) botulinum toxin substrate 1 (Rac1) activity, and apoptosis assays on previously characterized podocytes isolated from both in vivo-treated placebo and E(2) female db/db mice. We found that in vivo E(2) protects against a phenotype change in the cultured podocytes characterized by a percent increase of F-actin vs. G-actin, suppression of Hsp25 expression and transcriptional activation, increase of Rac1 activity, and decreased apoptotic intermediates. We conclude from these studies that E(2) treatment protects against podocyte damage and may prevent/reduce diabetes-induced kidney disease.


Endocrinology | 2012

Oxidant Stress and Mitochondrial Signaling Regulate Reversible Changes of ERα Expression and Apoptosis in Aging Mouse Glomeruli and Mesangial Cells

Simone Pereira-Simon; Xiaomei Xia; Paola Catanuto; Sharon J. Elliot

Estrogen actions are largely dependent on the intracellular estrogen receptor (ER) levels. During aging the decline of estrogens or ER leads to a loss in antiinflammatory protection and an increase in oxidant stress due to changes in mitochondrial function. Estrogens/ER may also coordinate signaling between the nucleus and mitochondria through ERK activation, which paradoxically decreases ER expression. The changes in ER expression and transcriptional activation that occur with aging as well as the mitochondria-to-nuclear signaling pathways have not been studied in the glomerulus. We found that ER expression and transcriptional activation decreased with age. Whereas ER levels decreased by greater than 90%, serum 17β-estradiol levels decreased by less than 30%, suggesting alternative mechanisms for ER decrease. Because we postulated that this was due in part to age-related oxidant stress, we treated mesangial cells (MCs) with ethidium bromide (EtBr) to deplete mitochondria. EtBr treatment resulted in decreased ERK activation and reactive oxygen species, which were associated with increased ERα expression and transcriptional activation in old MCs. EtBr treatment also decreased apoptosis and caspase-9 protein expression in old MCs. These data suggest that loss of several of the functions of 17β-estradiol during aging could be mainly due to decreased ERα expression, that the ER loss is reversible by reducing reactive oxygen species, and that mitochondrial retrograde signaling plays a role in this regulation.


PLOS ONE | 2016

Inhibition of Advanced Glycation End Products (AGEs) Accumulation by Pyridoxamine Modulates Glomerular and Mesangial Cell Estrogen Receptor α Expression in Aged Female Mice.

Simone Pereira-Simon; Gustavo A. Rubio; Xiaomei Xia; Weijing Cai; Rhea Choi; Gary E. Striker; Sharon J. Elliot

Age-related increases in oxidant stress (OS) play a role in regulation of estrogen receptor (ER) expression in the kidneys. In this study, we establish that in vivo 17β-estradiol (E2) replacement can no longer upregulate glomerular ER expression by 21 months of age in female mice (anestrous). We hypothesized that advanced glycation end product (AGE) accumulation, an important source of oxidant stress, contributes to these glomerular ER expression alterations. We treated 19-month old ovariectomized female mice with pyridoxamine (Pyr), a potent AGE inhibitor, in the presence or absence of E2 replacement. Glomerular ERα mRNA expression was upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Histological sections of kidneys demonstrated decreased type IV collagen deposition in mice receiving Pyr and E2 compared to placebo control mice. In addition, anti-AGE defenses Sirtuin1 (SIRT1) and advanced glycation receptor 1 (AGER1) were also upregulated in glomeruli following treatment with Pyr and E2. Mesangial cells isolated from all groups of mice demonstrated similar ERα, SIRT1, and AGER1 expression changes to those of whole glomeruli. To demonstrate that AGE accumulation contributes to the observed age-related changes in the glomeruli of aged female mice, we treated mesangial cells from young female mice with AGE-BSA and found similar downregulation of ERα, SIRT1, and AGER1 expression. These results suggest that inhibition of intracellular AGE accumulation with pyridoxamine may protect glomeruli against age-related oxidant stress by preventing an increase of TGFβ production and by regulation of the estrogen receptor.

Collaboration


Dive into the omei Xia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary E. Striker

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge