Xiaomin Su
Nankai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaomin Su.
Journal of Immunology | 2011
Miaomiao Zhang; Qiaofei Liu; Siping Mi; Xue Liang; Zhiqian Zhang; Xiaomin Su; Jinyi Liu; Yingying Chen; Mengmeng Wang; Yuan Zhang; Fenghua Guo; Zhujun Zhang; Rongcun Yang
Myeloid-derived suppressor cells (MDSCs) were one of the major components of the immune suppressive network. STAT3 has an important role in regulating the suppressive potential of MDSCs. In this study, we found that the expression of STAT3 could be modulated by both miR-17-5p and miR-20a. The transfection of miR-17-5p or miR-20a remarkably reduces the expression of reactive oxygen species and the production of H2O2, which are regulated by STAT3. MDSCs transfected with miR-17-5p or miR-20a are less able to suppress Ag-specific CD4 and CD8 T cells. Importantly, both miR-17-5p and miR-20a alleviate the suppressive function of MDSCs in vivo. The expression of miR-17-5p and miR-20a in tumor-associated MDSCs was found to be lower than in Gr1+CD11b+ cells isolated from the spleens of disease-free mice. Tumor-associated factor downregulates the expression of both miR-17-5p and miR-20a. The modulation of miR-17-5p and miR-20a expression may be important for the process by which patients with a tumor can overcome the immune tolerance mediated by MDSCs. Our results suggest that miR-17-5p and miR-20a could potentially be used for immunotherapy against diseases, especially cancer, by blocking STAT3 expression.
Journal of Immunology | 2013
Siping Min; Xue Liang; Miaomiao Zhang; Yuan Zhang; Shiyue Mei; Jinzhe Liu; Jingyi Liu; Xiaomin Su; Shuisong Cao; Xueqing Zhong; Yueming Li; Jiatan Sun; Qiaofei Liu; Xingran Jiang; Yongzhe Che; Rongcun Yang
Tumors use a wide array of immunosuppressive strategies, such as reducing the longevity and survival of dendritic cells (DCs), to diminish immune responses and limit the effect of immunotherapy. In this study, we found that tumors upregulate the expression of multiple microRNAs (miRNAs), such as miR-16-1, miR-22, miR-155, and miR-503. These tumor-associated miRNAs influenced the survival and longevity of DCs by affecting the expression of multiple molecules that are associated with apoptotic signaling pathways. Specifically, miR-22 targeted YWHAZ to interrupt the PI3K/Akt and MAPK signaling pathways, and miR-503 downregulated Bcl2 expression. The result of the increased expression of miR-22 and miR-503 in the tumor-associated DCs was their reduced survival and longevity. Thus, tumor-associated miRNAs can target multiple intracellular signaling molecules to cause the apoptosis of DCs in the tumor environment. Use of miR-22 and miR-503 as inhibitors may therefore represent a new strategy to improve DC-based immunotherapies against tumors.
Journal of Leukocyte Biology | 2014
Xiaomin Su; Shiyue Mei; Xue Liang; Shihua Wang; Jingyi Liu; Yuan Zhang; Yue Bao; Yanan Chen; Yongzhe Che; Robert Chunhua Zhao; Zhujun Zhang; Rongcun Yang
The members of a LRR family play crucial roles in the activation of innate and adaptive immune responses. We reported previously that LRRC33, a transmembrane protein of the LRR family, might potentially affect TLR‐mediated activity. Here, we demonstrate that LRRC33 is a negative physiological regulator for multiple TLRs. Lrrc33−/− and Lrrc33+/− mice were more susceptible to TLR ligand challenges. The macrophages and DCs from Lrrc33−/− mice produced more proinflammatory cytokines than those of WT mice through increased activation of MAPK and NF‐κB. Silencing LRRC33 also promoted multiple TLR‐mediated activation in human moDCs. Notably, LRRC33 expression could be down‐regulated by TLR ligands LPS, poly I:C, or PGN through H3K4me3 and H3K27me3 modification. In LPS‐conditioned moDCs, reduced enrichment of H3K4me3 and increased H3K27me3 could be observed at the promoter region of LRRC33. Furthermore, silencing H3K4me3‐associated factors MLL and RBBP5 not only decreased the enrichment of H3K4me3 but also down‐regulated expression of LRRC33, whereas the expression of LRRC33 was up‐regulated after silencing H3K27me3‐associated factors EZH2 and EED. Thus, our results suggest that LRRC33 and TLRs may form a negative‐feedback loop, which is important for the maintenance of immune homeostasis.
Nature Communications | 2014
Xiaomin Su; Siping Min; Shuisong Cao; Hui Yan; Yining Zhao; Hui Li; Limin Chai; Shiyue Mei; Jia Yang; Yuan Zhang; Zhujun Zhang; Feifei Liu; Wei Sun; Yongzhe Che; Rongcun Yang
The innate immune-dependent bactericidal effects are critical for preventing microbial colonization in the urinary system. However, the mechanisms involved in establishing innate immune responses in kidney are not completely understood. Here we describe the role of a novel member of the LRR (leucine-rich repeat) class of transmembrane proteins, LRRC19 (LRR-containing 19) in eliminating uropathogenic bacteria. LRRC19 is predominantly expressed in human and mouse kidney tubular epithelial cells and LRRC19-deficient mice are more susceptible to uropathogenic Escherichia coli (UPEC) infection than wild-type or TLR4 knockout mice. Recognition of UPEC by LRRC19 induces the production of cytokines, chemokines and antimicrobial substances through TRAF2- and TRAF6-mediated NF-κB and MAPK signalling pathways. Thus, LRRC19 may be a critical pathogen-recognition receptor in kidney mediating the elimination of UPEC infection.
Cell Reports | 2016
Shuisong Cao; Xiaomin Su; Benhua Zeng; Hui Yan; Yugang Huang; Enlin Wang; Huan Yun; Yuan Zhang; Feifei Liu; Wenxia Li; Hong Wei; Yongzhe Che; Rongcun Yang
Summary Commensal microbes are necessary for a healthy gut immune system. However, the mechanism involving these microbes that establish and maintain gut immune responses is largely unknown. Here, we have found that the gut immune receptor leucine-rich repeat (LRR) C19 is involved in host-microbiota interactions. LRRC19 deficiency not only impairs the gut immune system but also reduces inflammatory responses in gut tissues. We demonstrate that the LRRC19-associated chemokines CCL6, CCL9, CXCL9, and CXCL10 play a critical role in immune cell recruitment and intestinal inflammation. The expression of these chemokines is associated with regenerating islet-derived (REG) protein-mediated microbiotas. We also found that the expression of REGs may be regulated by gut Lactobacillus through LRRC19-mediated activation of NF-κB. Therefore, our study establishes a regulatory axis of LRRC19, REGs, altered microbiotas, and chemokines for the recruitment of immune cells and the regulation of intestinal inflammation.
Scientific Reports | 2016
Xiaomin Su; Hui Yan; Yugang Huang; Huan Yun; Benhua Zeng; Enlin Wang; Yu Liu; Yuan Zhang; Feifei Liu; Yongzhe Che; Zhiqian Zhang; Rongcun Yang
We here found that intestinal epithelial Paneth cells secrete FABP4, adipsin and adiponectin in both mice and human. Deletion of Paneth cell results in the decrease of FABP4, adipsin and adiponectin not only in intestinal crypt cells but also in sera, suggesting that they may influence the state of the whole body. We also demonstrate that expression of FABP4, adipsin and adiponectin may be modulated by specific gut microbiota. In germ-free (GF) mice, the expression of FABP4, adipsin and adiponectin were lower or difficult to be detected. Feces transplantation promoted the expression of FABP4, adipsin and adiponectin in gut epithelial Paneth cells. We have found that Lactobacillus NK6 colony, which has the highest similarity with Lactobacillus taiwanensis strain BCRC 17755, may induce the expression of FABP4, adipsin and adiponectin through TRAF2 and TRAF6 ubiquitination mediated NF-κB signaling. Taken together, our findings set up a novel mechanism for FABP4, adipsin and adiponectin through gut microbiota mediating expression in gut Paneth cells.
PLOS ONE | 2015
Shiyue Mei; Jiaxuan Xin; Yu Liu; Yuan Zhang; Xue Liang; Xiaomin Su; Hui Yan; Yugang Huang; Rongcun Yang
Myeloid-derived suppressor cells (MDSCs) constitute one of the major populations that potently suppress anti-tumor immune responses and favor tumor growth in tumor microenvironment. However, the mechanism(s) regulating the differentiation and suppressive function of tumor-associated MDSCs remain(s) unclear. Here, we identified a microRNA-200c (miR-200c), whose expression was dramatically induced by tumor-derived factors. Meanwhile, we also demonstrated that GM-CSF was a main inducer of miR-200c in tumor environment, and miR-200c in turn promoted the expansion and immune suppressive activity of MDSCs via targeting phosphatase and tensin homolog (PTEN) and friend of Gata 2 (FOG2), which can lead to STAT3 and PI3K/Akt activation. Finally, we examined in vivo suppressive function of miR-200c transfected MDSCs and found that miR-200c could remarkably promote tumor growth via modifying MDSCs. Thus, GM-CSF induced miR-200c in tumor environment plays a critical role in governing the expansion and functions of tumor-associated MDSCs and serves as a potential target in immunotherapy against tumor.
Journal of Immunology | 2017
Jiaxuan Xin; Zhiqian Zhang; Xiaomin Su; Liyang Wang; Yuan Zhang; Rongcun Yang
STAT3 plays a critical role in myeloid-derived suppressor cell (MDSC) accumulation and activation. Most studies have probed underlying mechanisms of STAT3 activation. However, epigenetic events involved in STAT3 activation are poorly understood. In this study, we identified several epigenetic-associated proteins such as p66a (Gatad2a), a novel protein transcriptional repressor that might interact with STAT3 in functional MDSCs, by using immunoprecipitation and mass spectrometry. p66a could regulate the phosphorylation and ubiquitination of STAT3. Silencing p66a promoted not only phosphorylation but also K63 ubiquitination of STAT3 in the activated MDSCs. Interestingly, p66a expression was significantly suppressed by IL-6 both in vitro and in vivo during MDSC activation, suggesting that p66a is involved in IL-6–mediated differentiation of MDSCs. Indeed, silencing p66a could promote MDSC accumulation, differentiation, and activation. Tumors in mice injected with p66a small interfering RNA–transfected MDSCs also grew faster, whereas tumors in mice injected with p66a-transfected MDSCs were smaller as compared with the control. Thus, our data demonstrate that p66a may physically interact with STAT3 to suppress its activity through posttranslational modification, which reveals a novel regulatory mechanism controlling STAT3 activation during myeloid cell differentiation.
Oncotarget | 2017
Wencong Shang; Zhenzhen Tang; Yunhuan Gao; Houbao Qi; Xiaomin Su; Yuan Zhang; Rongcun Yang
Myeloid-derived suppressor cells (MDSCs) play a critical role in regulating immune responses in cancer and other pathological conditions. Mechanism(s) regulating MDSC differentiation and function is not completely clear, especially epigenetic regulation. In this study, we found that MDSCs express retinal non-coding RNA3 (RNCR3), and the expression in MDSCs is upregulated by inflammatory and tumor associated factors. RNCR3 may function as a competing endogenous RNA (ceRNA) to promote Chop expression by sponging miR-185-5p during MDSC differentiation. RNCR3 knockdown suppressed differentiation and function of MDSCs in vitro and in vivo. Quantitative RT-PCR showed that RNCR3 was negatively regulated by miR-185-5p in MDSCs. MiR-185-5p affected the expansion of MDSCs and reversed the effect of RNCR3 on MDSC differentiation and function through directly targeting Chop. Thus, our results suggest a RNCR3/miR-185-5p/Chop autologously strengthening network to promote MDSC differentiation and suppressive function in response to extracellular inflammatory and tumor-associated signals.
Cell Death and Disease | 2018
Xiaomin Su; Chenglei Wu; Xiaoying Ye; Ming Zeng; Zhujun Zhang; Yongzhe Che; Yuan Zhang; Lin Liu; Yushuang Lin; Rongcun Yang
TRIM family members have been implicated in a variety of biological processes such as differentiation and development. We here found that Trim59 plays a critical role in early embryo development from blastocyst stage to gastrula. There existed delayed development and empty yolk sacs from embryonic day (E) 8.5 in Trim59−/− embryos. No viable Trim59−/− embryos were observed beyond E9.5. Trim59 deficiency affected primary germ layer formation at the beginning of gastrulation. At E6.5 and E7.5, the expression of primary germ layer formation-associated genes including Brachyury, lefty2, Cer1, Otx2, Wnt3, and BMP4 was reduced in Trim59−/− embryos. Homozygous mutant embryonic epiblasts were contracted and the mesoderm was absent. Trim59 could interact with actin- and myosin-associated proteins. Its deficiency disturbed F-actin polymerization during inner cell mass differentiation. Trim59-mediated polymerization of F-actin was via WASH K63-linked ubiquitination. Thus, Trim59 may be a critical regulator for early embryo development from blastocyst stage to gastrula through modulating F-actin assembly.