Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaomin Sun is active.

Publication


Featured researches published by Xiaomin Sun.


Chemosphere | 2013

The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning.

Jing Bai; Xiaomin Sun; Chenxi Zhang; Yisheng Xu; Chuansong Qi

Levoglucosan is a typical molecular tracer of biomass-burning aerosols in the atmosphere. The mechanism for OH-initiated reaction with levoglucosan is studied at the level of MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p). The possible subsequent reactions in the presence of O2, NO and H2O are also taken into consideration. The study shows that the H atom abstraction from the C4-position by the OH radical is an energetically favorable pathway, and that the OH-initiated products contribute to the formation of SOA and atmospheric acidity. The kinetic calculation is performed and the rate constants are calculated over the temperature range of 200-1500 K, using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The rate constant of levoglucosan reacting with the OH radical at 298 K is 2.21×10(-13) cm(3) molecule(-1) s(-1) and the atmospheric lifetime is 26 days ([OH]=2.0×10(6) molecule cm(-3)). The equilibrium constants both in gas phase and aqueous are computed. The free energy ΔG indicates that, the subsequent reactions tend to take place more spontaneously once the reaction occurs. This work provides a comprehensive investigation about OH-initiated atmospheric reactions with levoglucosan, which is helpful for experiment and risk assessment.


Chemosphere | 2015

Atmospheric degradation of lindane and 1,3-dichloroacetone in the gas phase. Studies at the EUPHORE simulation chamber

Teresa Vera; Esther Borrás; Jianmin Chen; Clara Coscollà; Véronique Daële; Abdelwahid Mellouki; Milagros Ródenas; Howard Sidebottom; Xiaomin Sun; Vicent Yusà; Xue Zhang; Amalia Muñoz

The gas-phase degradation of lindane (γ-isomer of hexachlorocyclohexane) towards OH radical was investigated under atmospheric conditions at the large outdoor European simulation chamber (EUPHORE) in Valencia, Spain. The rate coefficient for the reaction of hydroxyl radicals with lindane was measured using a conventional relative rate technique leading to a value of kOH(lindane)=(6.4±1.6)×10(-13) cm(3) molecule(-1) s(-1) at 300±5 K and atmospheric pressure. The results suggest that the tropospheric lifetime of lindane with respect to OH radicals is approximately 20 days. The product distribution studies on the OH-initiated oxidation of lindane provided evidence that the major initial carbon-containing oxidation product is pentachlorocyclohexanone. 1,3-Dichloroacetone was employed as a model compound for pentachlorocyclohexanone, and an investigation of its photolysis and reaction with OH radicals under atmospheric conditions was carried out. The data indicate that the atmospheric degradation of pentachlorocyclohexanone would be relatively rapid, and would not form persistent organic compounds. Theoretical study was also employed to calculate possible degradation pathways. Mechanism for reaction of lindane with OH radicals is proposed, and C-Cl bond cleavage is discussed. OH abstraction is considered to be a reasonable way for Cl to escape during degradation. The atmospheric implications of the use of lindane as an insecticide are discussed.


Journal of Environmental Sciences-china | 2014

Mechanism and kinetics study on the ozonolysis reaction of 2,3,7,8-TCDD in the atmosphere

Jing Bai; Xiaomin Sun; Chenxi Zhang; Chen Gong; Jingtian Hu; Jianghua Zhang

The ozonolysis of 2,3,7,8-tetra-chlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an efficient degradation way in the atmosphere. The ozonolysis process and possible reactions path of Criegee Intermediates with NO and H2O are introduced in detail at the method of MPWB1K/6-31+G(d,p)//MPWB1K/6-311+G(3df,2p) level. In ozonolysis, H2O is an important source of OH radical formation and initiated the subsequent degradation reaction. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory was applied to calculate rate constants with the temperature ranging from 200 to 600 K. The rate constant of reaction between 2,3,7,8-TCDD and O3 is 4.80 x 10(-20) cm3/(mole x sec) at 298 K and 760 Torr. The atmospheric lifetime of the reaction species was estimated according to rate constants, which is helpful for the atmospheric model study on the degradation and risk assessment of dioxin.


Chemosphere | 2014

Micro-mechanism and rate constants for OH-initiated degradation of methomyl in atmosphere.

Xiuchao Wu; Xiaomin Sun; Chenxi Zhang; Chen Gong; Jingtian Hu

The atmospheric degradation reactions of the two isomers of methomyl (MTL) initiated by OH radical in the presence of O2, NO and H2O have been investigated by density functional theory (DFT). The calculations were all carried out at MPWB1K level. The geometrical parameters and vibrational frequencies of stationary points were calculated with 6-31+G (d, p) basis sets. Single-point energy calculations were performed with 6-311+G (3df, 2p) basis sets. Profiles of the potential energy surface were constructed and all possible channels involved in the reactions were discussed. The rate constants of main elementary reactions were calculated over a temperature range of 200-400 K and mostly fitted to Arrhenius formulas. The atmospheric lifetimes of reaction species were discussed for the first time, which can be applied to the study on model simulation and management of hazardous materials.


Journal of Environmental Sciences-china | 2017

Electronic-property dependent interactions between tetracycline and graphene nanomaterials in aqueous solution

Lin He; Fei-fei Liu; Mengyao Zhao; Zhen Qi; Xue-Fei Sun; Muhammad Zaheer Afzal; Xiaomin Sun; Yanhui Li; Jingcheng Hao; Shu-Guang Wang

Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface.


International Journal of Molecular Sciences | 2015

Chemical Conversion Pathways and Kinetic Modeling for the OH-Initiated Reaction of Triclosan in Gas-Phase

Xue Zhang; Chenxi Zhang; Xiaomin Sun; Lingyan Kang; Yan Zhao

As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin.


International Journal of Molecular Sciences | 2014

Kinetics and quantitative structure-activity relationship study on the degradation reaction from perfluorooctanoic acid to trifluoroacetic acid.

Chen Gong; Xiaomin Sun; Chenxi Zhang; Xue Zhang; Junfeng Niu

Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated.


Chemosphere | 2018

Towards understanding the role of amines in the SO 2 hydration and the contribution of the hydrated product to new particle formation in the Earth's atmosphere

Guochun Lv; Alexey B. Nadykto; Xiaomin Sun; Chenxi Zhang; Yisheng Xu

By theoretical calculations, the gas-phase SO2 hydration reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the hydrated product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO2 hydration reaction is lower than the corresponding that of water and ammonia assisted SO2 hydration. In these hydration reactions, nearly barrierless reaction (only a barrier of 0.1u202fkcalu202fmol-1) can be found in the case of SO2xa0+xa02H2Oxa0+xa0DMA. These lead us to conclude that the SO2 hydration reaction assisted by MA and DMA is energetically facile. The temporal evolution for hydrated products (CH3NH3+-HSO3--H2O or (CH3)2NH2+-HSO3--H2O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these hydrated products formed by the hydration reaction may serve as a condensation nucleus to initiate the NPF.


International Journal of Molecular Sciences | 2015

Quantitative Structure-Activity Relationships Study on the Rate Constants of Polychlorinated Dibenzo-p-Dioxins with OH Radical

Chuansong Qi; Chenxi Zhang; Xiaomin Sun

The OH-initiated reaction rate constants (kOH) are of great importance to measure atmospheric behaviors of polychlorinated dibenzo-p-dioxins (PCDDs) in the environment. The rate constants of 75 PCDDs with the OH radical at 298.15 K have been calculated using high level molecular orbital theory, and the rate constants (kα, kβ, kγ and kOH) were further analyzed by the quantitative structure-activity relationships (QSAR) study. According to the QSAR models, the relations between rate constants and the numbers and positions of Cl atoms, the energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied molecular orbital (ELUMO), the difference ΔEHOMO-LUMO between EHOMO and ELUMO, and the dipole of oxidizing agents (D) were discussed. It was found that EHOMO is the main factor in the kOH. The number of Cl atoms is more effective than the number of relative position of these Cl atoms in the kOH. The kOH decreases with the increase of the substitute number of Cl atoms.


Journal of Environmental Sciences-china | 2014

Theoretical study on the degradation reaction of octachlorinated dibenzo-p-dioxin with atomic oxygen O(3P) in dielectric barrier discharge reactor

Chen Gong; Xiaomin Sun; Chenxi Zhang; Jingtian Hu; Chuansong Qi

Dielectric barrier discharges (DBD) have been used in the degradation of dioxins due to the large number of excimers and free radicals produced in discharge process. In this article, the density functional theory (DFT) is used to study the degradation mechanism of octachlorinated dibenzo-p-dioxin (OCDD) with the atomic oxygen O((3)P) in DBD reactor. The reactants, intermediates, transition states and products are optimized at the MPWB1K/6-31+G(d,p) level. The vibrational frequencies have been calculated at the same level. The reaction pathways and mechanisms are analyzed in detail. The effect of removing the chlorine atom on environment also has been discussed.

Collaboration


Dive into the Xiaomin Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chuansong Qi

Beijing Institute of Petrochemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge