Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaonan Chen is active.

Publication


Featured researches published by Xiaonan Chen.


Cellular Physiology and Biochemistry | 2015

MiR-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting TIGAR.

Shanshan Chen; Ping Li; Juan Li; Yuanyuan Wang; Yuwen Du; Xiaonan Chen; Wenqiao Zang; Huaqi Wang; Heying Chu; Guoqiang Zhao; Guojun Zhang

Background: MiRNAs are noncoding RNAs of 20-24 nucleotides that function as post-transcriptional negative regulators of gene expression. MiRNA genes are usually transcribed by RNA polymerase II in the nucleus. Their initial products are pre-miRNAs which have cap sequences and polyA tails. The p53-induced glycolysis and apoptosis regulator (TIGAR) was discovered through microarray analysis of gene expression following activation of p53. However, little is known about the effect of miR-144 on cell proliferation and apoptosis and how it interacts with TIGAR. Methods: We performed real-time PCR, western blotting, CCK8, colony formation, tumor growth, flow cytometry, Caspase3/7 activity, Hoechst 33342 staining, MDC staining of autophagic cells and luciferase reporter assays to detect the influence of miR-144 to lung cancer cells. Results: miR-144 targeted TIGAR, inhibited proliferation, enhanced apoptosis, and increased autophagy in A549 and H460 cells. Conclusions: Our study improves our understanding of the mechanisms underlying lung cancer pathogenesis and may promote the development of novel targeted therapies.


Tumor Biology | 2014

MicroRNA-124 inhibits cellular proliferation and invasion by targeting Ets-1 in breast cancer.

Wentao Li; Wenqiao Zang; Pei Liu; Yuanyuan Wang; Yuwen Du; Xiaonan Chen; Meng Deng; Wencong Sun; Lei Wang; Guoqiang Zhao; Baoping Zhai

MicroRNAs (miRNAs) are small non-coding RNAs that, by targeting certain messenger RNAs (mRNAs) for translational repression or cleavage, can regulate the expression of these genes. In addition, miRNAs may also function as oncogenes and tumor-suppressor genes, as the abnormal expression of miRNAs is associated with various human tumors. However, the effects of the expression of miR-124 in breast cancer remain unclear. The present study was conducted to study the expression of miR-124 in breast cancer, paying particular attention to miR-124’s relation to the proliferation, invasion, and apoptosis in breast cancer cell MCF-7 and MDA-MB-231. Real-time quantitative RT-PCR (qRT-PCR) was performed to identify miR-124 that was down-regulated in breast cancer tissues. We also showed E26 transformation specific-1 (Ets-1) and miR-124 expression levels in breast cancer tissues that were associated with lymph node metastases. With transfected synthetic miR-124 agomir into MCF-7 and MDA-MB-231, a significant reduction (P < 0.05) in MCF-7 and MDA-MB-231 cell proliferation and colony forming potential was observed after treatment with miR-124. Apoptosis and migration rates were found to be significantly higher in two breast-derived cell lines transfected with a miR-124 agomir (P < 0.05). Luciferase reporter assay and Western blot were used to verify Ets-1 as a potential major target gene of miR-124, and the result showed that miR-124 can bind to putative binding sites within the Ets-1 mRNA 3′ untranslated region (UTR) to reduce its expression. Based on these findings, we propose that miR-124 and Ets-1 may serve as a therapeutic agent in breast cancer.


Molecular Cancer | 2015

miR-663 attenuates tumor growth and invasiveness by targeting eEF1A2 in pancreatic cancer

Wenqiao Zang; Yuanyuan Wang; Tao Wang; Yuwen Du; Xiaonan Chen; Min Li; Guoqiang Zhao

BackgroundmiR-663 is associated with many important biologic processes, such as the evolution, development, viral infection, inflammatory response, and carcinogenesis among vertebrates. However, the molecular function and mechanism of miR-663 in pancreatic cancer growth and invasion is still unclear.MethodsWestern blot and real-time PCR were used to study the expression level of eEF1A2 protein and miR-663 in pancreatic cancer tissues and cell lines. The Pearson χ2 test was used to determine the correlation between miR-663 expression and clinicopathologic features of patients. Patients’ survival was analyzed using the Kaplan–Meier method, using the log-rank test for comparison. The biological function of miR-663 was examined by measuring cell growth, cell invasion and apoptosis analysis in vitro and in vivo. miR-663 target gene and signaling pathway was identified by luciferase activity assay and western blot.ResultsWe found that, in pancreatic cancer, eEF1A2 was significantly upregulated but miR-663 was significantly downregulated. Further results showed that the expression level of eEF1A2 and miR-663 was strongly associated with TNM stage and node metastasis status of the patients. miR-663 and eEF1A2 were inversely correlated with each other, and the changes in the expression levels of each can also predict the survival of patients with pancreatic cancer. We identified miR-663 as a tumor attenuate molecular that attenuated the proliferation and invasion of pancreatic cancer cells both in vitro and in vivo. Finally, we confirmed that the expression of eEF1A2 can partially restore the pro-apoptotic and anti-invasion functions of miR-663.ConclusionsmiR-663 attenuated the proliferation and invasion of pancreatic cells both in vitro and in vivo by directly targeting eEF1A2. miR-663 and eEF1A2 might be potential targets for the treatment of pancreatic cancer in the future.


Tumor Biology | 2015

Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer

Juan-Juan Li; Ping Li; Tengfei Chen; Ge Gao; Xiaonan Chen; Yuwen Du; Ren-Wen Zhang; Rui-Bin Yang; Wei Zhao; Shaozhi Dun; Feng Gao; Guojun Zhang

MicroRNAs are implicated in the regulation of various cellular processes, including proliferation, differentiation, cell death, and cell mobility, and can function either as oncogenes or tumor suppressors in tumor progression. The effects of the expression of miR-96 in non-small cell lung cancer (NSCLC) remain unclear. In our study, qRT-PCR (quantitative reverse transcription PCR) was performed to identify the miR-96 expression level in 68 paired NSCLC and adjacent normal lung tissues. Trans-well, cell counting kit-8, and apoptosis assays were used to evaluate the effects of miR-96 expression on cell invasion, proliferation, and apoptosis. Dual-luciferase reporter assay and Western blotting were used to verify whether FOXO3 was a potential major target gene of miR-96. Finally, the effect of FOXO3 on miR-96-induced cell survival was determined by transfection of the genes expressing FOXO3 lacking 3′UTR and miR-96. The expression level of miR-96 in NSCLC tissues was higher than that in adjacent normal lung tissues, and this increased expression was significantly associated with lymph node metastasis. In contrast to the cells in the blank and negative control groups, the number of cells migrating through the matrigel was significantly lower and the incidence of apoptosis was significantly higher in cells transfected with a miR-96 inhibitor. Western blotting and dual-luciferase reporter assays demonstrated that miR-96 can bind to the putative seed region in FOXO3 mRNA 3′UTR, and can significantly lower the expression of FOXO3. The introduction of FOXO3 cDNA without 3′UTR restored miR-96 induced cell apoptosis and invasion. MiR-96 is up-regulated in NSCLC tissues. Downregulation of miR-96 inhibits invasion and promotes apoptosis in NSCLC cells A549 and SPC-A-1 by targeting FOXO3. Therefore, our study improves our understanding of the mechanisms underlying NSCLC pathogenesis and may promote the development of novel targeted therapies.


Oncotarget | 2016

Knockdown of long non-coding RNA TP73-AS1 inhibits cell proliferation and induces apoptosis in esophageal squamous cell carcinoma.

Wenqiao Zang; Tao Wang; Yuanyuan Wang; Xiaonan Chen; Yuwen Du; Qianqian Sun; Min Li; Ziming Dong; Guoqiang Zhao

Recent studies have shown that long non-coding RNAs (lncRNAs) are involved in a variety of biological processes and diseases in humans, including cancer. Our study serves as the first comprehensive analysis of lncRNA TP73-AS1 in esophageal cancer. We utilized a lncRNA microarray to analyze the expression profile of lncRNAs in esophageal squamous cell carcinoma. Our results show that lncRNA TP73-AS1 and BDH2 levels are generally upregulated in esophageal cancer tissues and are strongly correlated with tumor location or TNM stage in clinical samples. LncRNA TP73-AS1 knockdown inhibited BDH2 expression in EC9706 and KYSE30 cells, whereas BDH2 knockdown repressed esophageal cancer cell proliferation and induced apoptosis via the caspase-3 dependent apoptotic pathway. Overexpression of BDH2 in lncRNA TP73-AS1 knockdown cells partially rescued cell proliferation rates and suppressed apoptosis. In mouse xenografts, tumor size was reduced in lncRNA TP73-ASI siRNA-transfected tumors, suggesting that downregulation of lncRNA TP73-AS1 attenuated EC proliferation in vitro and in vivo. In addition, BDH2 or lncRNA TP73-AS1 knockdown enhanced the chemosensitivity of esophageal cancer cells to 5-FU and cisplatin. Our results suggest that lncRNA TP73-AS1 may be a novel prognostic biomarker that could serve as a potential therapeutic target for the treatment of esophageal cancer.


Tumor Biology | 2015

miR-194 targets RBX1 gene to modulate proliferation and migration of gastric cancer cells

Xiaonan Chen; Yuanyuan Wang; Wenqiao Zang; Yuwen Du; Min Li; Guoqiang Zhao

RING box protein1 (RBX1), an essential component of SCF E3 ubiquitin ligases, plays an important role in gastric cancer. In the study, miR-194 and RBX1 expression was evaluated in 76 pairs of gastric tumor and non-tumor tissue samples by qRT-PCR, and clinicopathological characteristics were analyzed. CCK8, transwell assay, wound healing assay, and flow cytometry assay were performed to evaluate the effect of miR-194 on gastric cancer (GC) cellular proliferation, invasion, migration, apoptosis, and cell cycle, respectively. Luciferase reporter assays and Western blotting were used to evaluate whether RBX1 is a direct target of miR-194. The Kaplan-Meier method and log-rank test were used to evaluate the correlation between miR-194 or RBX1 expression and patient survival. Then, we found that miR-194 was significantly downregulated and RBX1 upregulated in GC tissues; both of which showed significant association with tumor size, location, invasion, and tumor node metastasis. Cell proliferation, invasion, and migration were significantly restricted with miR-194 overexpression. miR-194 downregulated RBX1 protein expression, and luciferase assays showed that binding sites in the RBX1 3′UTR were required for miR-194-mediated repression of RBX1, indicating that RBX1 was a direct target of miR-194. Transfection of RBX1 without the 3′UTR restored the miR-194-inhibiting migration function. miR-194 overexpression or RBX1 lowexpression was associated with prolonged survival of GC patients. In conclusion, upregulation of miR-194 can inhibit proliferation, migration, and invasion of GC cells, possibly by targeting RBX1. Aberrant expression of miR-194 and RBX1 is correlated to GC patient survival time.


Cancer Cell International | 2014

Myricetin enhance chemosensitivity of 5-fluorouracil on esophageal carcinoma in vitro and in vivo.

Lei Wang; Jianfang Feng; Xiaonan Chen; Wei Guo; Yuwen Du; Yuanyuan Wang; Wenqiao Zang; Shijie Zhang; Guoqiang Zhao

BackgroundFlavonoids are structurally heterogeneous, polyphenolic compounds present in high concentrations in fruits, vegetables, and other plant-derived foods. Currently, there is growing interest in the therapeutic applications of bioflavonoids for the treatment and prevention of diseases in humans. Myricetin is a naturally occurring flavonoid that is commonly found in tea, berries, fruits, vegetables, and medicinal herbs. Previous studies have shown that myricetin has antioxidant, anti-inflammatory and potent anticancer effects. It was interesting to investigate whether myricetin has the cooperative inhibitory effect combined with 5-fluorouracil on esophageal cancer cells.MethodsEC9706 cells were treated with 5-fluorouracil combination with or without myricetin. Colony formation assays, CCK-8 assay and flow cytometry were used to evaluate the chemosensitization activity of myricetin combine with 5-fluorouracil on the cell growth and viability, cell proliferation and apoptosis in vitro. Western blot was engaged to detect changes of Survivin, Cyclin D, Bcl-2, Caspase-3 and P53 protein expression level, which were associated with cells proliferation and apoptosis. Nude mouse tumor xenograft model was built to assessed chemosensitization effect of myricetin combine with 5-fluorouracil in vivo.ResultsCompared with the 5-fluorouracil group without myricetin treatment, the groups treated with 5-fluorouracil combine with myricetin showed significantly suppressed cell survival fraction and proliferation, increased the cell apoptosis. Decreased Survivin, Cyclin D, Bcl-2, and increased Caspase-3, P53 expression level were aslo confirmed by western blot in 5-fluorouracil combine with myricetin groups in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in the mice treated with 5-fluorouracil + myricetin combiantion group.ConclusionsThe study demonstrated both in vitro and in vivo evidence that combination of myricetin with 5-fluorouracil chemotherapy can enhance tumor chemosensitivity of esophageal cancer EC9706 cells, and myricetin could be a potential chemosensitizer for esophageal cancer therapy.


World Journal of Gastroenterology | 2015

MiR-451 inhibits proliferation of esophageal carcinoma cell line EC9706 by targeting CDKN2D and MAP3K1.

Wenqiao Zang; Xuan Yang; Tao Wang; Yuanyuan Wang; Yuwen Du; Xiaonan Chen; Min Li; Guoqiang Zhao

AIM To investigate the underlying molecular mechanisms of miR-451 to inhibit proliferation of esophageal carcinoma cell line EC9706. METHODS Assays for cell growth, apoptosis and invasion were used to evaluate the effects of miR-451 expression on EC cells. Luciferase reporter and Western blot assays were used to test whether cyclin-dependent kinase inhibitor 2D (CDKN2D) and MAP3K1 act as major targets of miR-451. RESULTS The results showed that CDKN2D and MAP3K1 are direct targets of miR-451. CDKN2D and MAP3K1 overexpression reversed the effect of miR-451. MiR-451 inhibited the proliferation of EC9706 by targeting CDKN2D and MAP3K1. CONCLUSION These findings suggest that miR-451 might be a novel prognostic biomarker and a potential target for the treatment of esophageal squamous cell carcinoma in the future.


Medical Oncology | 2016

LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma.

Yanping Wei; Qianqian Sun; Lindong Zhao; Jianbo Wu; Xiaonan Chen; Yuanyuan Wang; Wenqiao Zang; Guoqiang Zhao

Recently, the incidence of melanoma has been on the rise. Patients with distant metastasis share poor prognosis. Increasing studies have been conducted to clarify the molecular mechanisms as well as to investigate potential effective therapeutic targets in the development of melanoma. This study focuses on the LncRNA UCA1 and its downstream regulated factors. In our experiments, UCA1 expression was discovered to be upregulated in melanoma tissues and cells, while the depletion of UCA1 led to the inhibition of cell proliferation, invasion and cell cycle arrest. To further our understanding of the mechanisms of UCA1, a system of experiments was built. We found that miR-507 could directly bind to UCA1 at the miRNA recognition site, and that there was a negative correlation between miR-507 and UCA1. Additionally, FOXM1 is a target of miR-507 and can be downregulated by either miR-507 overexpression or UCA1 depletion. Downregulated FOXM1 was analogous to the depletion of UCA1 and the overexpression of miR-507. These results, taken together, provide evidence for a novel UCA1 interaction regulatory network in tumorigenesis of melanoma.


Cancer Cell International | 2015

Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma

Juan Li; Ping Li; Wei Zhao; Rui Yang; Shanshan Chen; Yong Bai; Shaozhi Dun; Xiaonan Chen; Yuwen Du; Yuanyuan Wang; Wenqiao Zang; Guoqiang Zhao; Guojun Zhang

BackgroundLung adenocarcinoma (LAC), the primary histological type of non-small cell lung cancer (NSCLC), has displayed an increasing incidence and mortality worldwide. However, therapeutic approaches were limited. Dysregulation of some lncRNAs has been shown in various types of cancers including LAC. The aim of the present study was to vertify lncRNA DLX6-AS1 expression in LAC.MethodsMicroarray assay revealed expression profile of lncRNAs in LAC. qRT-PCR ( quantitative reverse transcription PCR) was performed to identify lncRNA DLX6-AS1 expression level in 72 paired LAC and adjacent normal lung tissues. qRT-PCR and Western blotting were used to verify that down-regulation lncRNA DLX6-AS1 decreased DLX6 (distal-less homeobox 6) mRNA and protein expression.ResultsMicroarray analysis identified up-regulation of 272 lncRNAs and down-regulation of 635 lncRNAs in LAC tissues. The expression level of lncRNA DLX6-AS1 in LAC tissues was significantly higher compared to paired adjacent normal lung tissues (P< 0.05). In addition, its expression level was closed correlated with both histological differentiation (P = 0.004) and TNM stage (P = 0.033). qRT-PCR and Western blotting analysis showed that DLX6 mRNA and protein levels were lower in si-LncRNA group than in the NC (negative control) and Blank groups.ConclusionsMicroarray analysis identified that lncRNA DLX6-AS1 was up-regulated in LAC tissues. High DLX6-AS1 expression levels were significantly associated with both histological differentiation and TNM stage. Down-regulation of lncRNA DLX6-AS1 expression decreased the DLX6 mRNA and protein levels.

Collaboration


Dive into the Xiaonan Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuwen Du

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Li

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Li

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Li

Zhengzhou University

View shared research outputs
Researchain Logo
Decentralizing Knowledge