Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoning Gao is active.

Publication


Featured researches published by Xiaoning Gao.


Nature Communications | 2013

High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus

Wenming Zheng; Lili Huang; Jinqun Huang; Xiaojie Wang; Xianming Chen; Jie Zhao; Jun Guo; Hua Zhuang; Chuangzhao Qiu; Jie Liu; Huiquan Liu; Xueling Huang; Guoliang Pei; Gangming Zhan; Chunlei Tang; Yulin Cheng; Minjie Liu; Jinshan Zhang; Zhongtao Zhao; Shijie Zhang; Qingmei Han; Dejun Han; Hongchang Zhang; Jing Zhao; Xiaoning Gao; Jianfeng Wang; Peixiang Ni; Wei Dong; Linfeng Yang; Huanming Yang

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat. Here we report a 110-Mb draft sequence of Pst isolate CY32, obtained using a ‘fosmid-to-fosmid’ strategy, to better understand its race evolution and pathogenesis. The Pst genome is highly heterozygous and contains 25,288 protein-coding genes. Compared with non-obligate fungal pathogens, Pst has a more diverse gene composition and more genes encoding secreted proteins. Re-sequencing analysis indicates significant genetic variation among six isolates collected from different continents. Approximately 35% of SNPs are in the coding sequence regions, and half of them are non-synonymous. High genetic diversity in Pst suggests that sexual reproduction has an important role in the origin of different regional races. Our results show the effectiveness of the ‘fosmid-to-fosmid’ strategy for sequencing dikaryotic genomes and the feasibility of genome analysis to understand race evolution in Pst and other obligate pathogens.


Fungal Genetics and Biology | 2014

Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree

Xiwang Ke; Zhiyuan Yin; Na Song; Qingqing Dai; Ralf T. Voegele; Yangyang Liu; Haiying Wang; Xiaoning Gao; Zhensheng Kang; Lili Huang

Apple Valsa canker, caused by the fungus Valsa mali (Vm), is one of the most destructive diseases of apple in China. A better understanding of this host-pathogen interaction is urgently needed to improve management strategies. In the current study we sequenced the transcriptomes of Vm during infection of apple bark and mycelium grown in axenic culture using Illumina RNA-Seq technology. We identified 437 genes that were differentially expressed during fungal infection compared to fungal mycelium grown in axenic culture. One hundred and thirty nine of these 437 genes showed more than two fold higher transcript abundance during infection. GO and KEGG enrichment analyses of the up-regulated genes suggest prevalence of genes associated with pectin catabolic, hydrolase activity and secondary metabolite biosynthesis during fungal infection. Some of the up-regulated genes associated with loss of pathogenicity and reduced virulence annotated by host-pathogen interaction databases may also be involved in cell wall hydrolysis and secondary metabolite transport, including a glycoside hydrolase family 28 protein, a peptidase and two major facilitator superfamily proteins. This highlights the importance of secondary metabolites and cell wall hydrolases during establishment of apple Valsa canker. Functional verification of the genes involved in pathogenicity of Vm will allow us to better understand how the fungus interferes with the host machinery and assists in apple canker establishment.


New Phytologist | 2015

Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark

Zhiyuan Yin; Huiquan Liu; Zhengpeng Li; Xiwang Ke; Daolong Dou; Xiaoning Gao; Na Song; Qingqing Dai; Yuxing Wu; Jin-Rong Xu; Zhensheng Kang; Lili Huang

Canker caused by ascomycetous Valsa species are among the most destructive diseases of woody plants worldwide. These pathogens are distinct from other pathogens because they only effectively attack tree bark in the field. To unravel the potential adaptation mechanism of bark colonization, we examined the genomes of Valsa mali and Valsa pyri that preferentially infect apple and pear, respectively. We reported the 44.7 and 35.7 Mb genomes of V. mali and V. pyri, respectively. We also identified the potential genomic determinants of wood colonization by comparing them with related cereal pathogens. Both genomes encode a plethora of pathogenicity-related genes involved in plant cell wall degradation and secondary metabolite biosynthesis. In order to adapt to the nutrient limitation and low pH environment in bark, they seem to employ membrane transporters associated with nitrogen uptake and secrete proteases predominantly with acidic pH optima. Remarkably, both Valsa genomes are especially suited for pectin decomposition, but are limited in lignocellulose and cutin degradation. Besides many similarities, the two genomes show distinct variations in many secondary metabolism gene clusters. Our results show a potential adaptation of Valsa canker pathogens to colonize woody bark. Secondary metabolism gene clusters are probably responsible for this host specificity.


World Journal of Microbiology & Biotechnology | 2013

Validation of reference genes for gene expression analysis in Valsa mali var. mali using real-time quantitative PCR

Zhiyuan Yin; Xiwang Ke; Dingxuan Huang; Xiaoning Gao; Ralf T. Voegele; Zhensheng Kang; Lili Huang

Valsa mali var. mali (Vmm), is the predominant species of apple valsa canker in China. Modern analysis of genes involved in virulence or pathogenicity usually implicate gene expression analysis most often performed using real-time quantitative polymerase chain reaction (RT-qPCR). However, for relative gene expression analysis pertinent reference genes have to be validated before using them as internal reference. This has not been reported for Vmm, so far. Therefore, eight commonly used housekeeping genes (ACT, CYP, EF1-α, G6PDH, GAPDH, L13, TUB, and UBQ) were cloned and evaluated for their expression stability by geNorm and NormFinder. Overall, all of the candidate reference genes were found to be suitable for gene expression analysis. After analysis of 10 samples from different strains and abiotic stress treatments, G6PDH appeared to be the most suitable reference gene, whereas GAPDH was the least suitable. Moreover, taking G6PDH combined with L13 or CYP as reference genes, improved the reliability of RT-qPCR significantly. The influence of the reference system on expression data was demonstrated by analyzing Vmmpg-1 encoding an endo-polygalacturonase gene. Pectinases are considered key pathogenicity factors for this fungus. In order to better understand the role of pectinases in pathogenicity of Vmm, RT-qPCR was used for expression analysis. Our results may provide a guideline for future studies on gene expression of V. mali var. mali by using RT-qPCR.


BioMed Research International | 2010

Optimization of the Fermentation Process of Actinomycete Strain Hhs.015T

Xinxuan Wang; Lili Huang; Zhensheng Kang; Heinrich Buchenauer; Xiaoning Gao

Strain Hhs.015T (Saccharothrix yanglingensis sp. nov.), an antagonistic endophytic Saccharothrix actinomycete isolated from roots of cucumber plants, exhibited a broad antimicrobial spectrum in vitro and was active as a biocontrol against plant diseases in field trials. The SSY medium was used for production of antimicrobial metabolites by strain Hhs.015T. However, this medium is too expensive for large-scale production. In this study, an alternative culture medium, based on agricultural waste products (e.g., apple pomace), was optimized. The results showed that the alternative medium contained 15 g apple pomace, 4 g rapeseed meal, 0.1 g KH2PO4, and 0.6 g MgSO4·7H2O in 1 L distilled water. This medium reduced the material costs by 91.5% compared to SSY medium. Response surface methodology (RSM) was used to investigate the influence of environmental variables on production of compounds of antimicrobial metabolites. The optimal conditions achieved were initial pH 7.0, medium volume of 90 mL in 250 mL flasks, rotary speed of 100 rpm, temperature 25°C, and inoculation volume of 15.8%. The antimicrobial activity was increased by 20% by optimizing the environmental parameters. The results obtained allow an efficient production of components with antimicrobial activity by strain Hhs.015T on a large scale at low costs.


Biocontrol Science and Technology | 2014

Biological control of oilseed rape Sclerotinia stem rot by Bacillus subtilis strain Em7

Xiaoning Gao; Qingmei Han; Yafei Chen; Huqiang Qin; Lili Huang; Zhensheng Kang

In the present study, the endophytic bacterium Bacillus subtilis strain Em7 (GU258545.1) was evaluated as a biological control agent for Sclerotinia sclerotiorum on oilseed rape. In petri dish, strain Em7 not only strongly inhibited pathogen mycelium growth but also germination of sclerotia at concentrations between 109 and 1011 colony forming unit (CFU)·ml−1. Scanning electron microscopy and transmission electron microscopy studies revealed that in the presence of strain Em7, hyphae of S. sclerotiorum showed leakage and disintegration of hyphal cytoplasm. Furthermore, the strain Em7 showed a broad antifungal spectrum on mycelium growth of numerous important plant pathogenic fungi. Light microscopic observations revealed that strain Em7 caused morphological alterations including increased branching, swelling and collapse of cytoplasm. In the greenhouse, spray treatments of cell suspensions of strain Em7 (1×109 CFU·ml−1) reduced leaf and stem rot incidence and severity in the seedling and blossom stage. The control efficacy was higher when strain Em7 cell suspension was applied one day prior to inoculation of the pathogen than after inoculation. Three-year field trials showed that two applications of strain Em7 cell suspension at blossom stage significantly reduced disease incidence and severity by 50–70%. There was no significant difference in control efficacy among treatments with strain Em7 cell suspension and the fungicides containing carbendazim or tebuconazole (P = 0.05). Thus, our results strongly suggest that B. subtilis strain Em7 is a promising biological control agent for control of oilseed rape Sclerotinia stem rot.


PLOS ONE | 2016

Studies on the Infection, Colonization, and Movement of Pseudomonas syringae pv. actinidiae in Kiwifruit Tissues Using a GFPuv-Labeled Strain

Xiaoning Gao; Qiling Huang; Zhibo Zhao; Qingmei Han; Xiwang Ke; Huqiang Qin; Lili Huang

Kiwifruit bacterial canker, an economically important disease caused by Pseudomonas syringae pv. actinidiae (Psa), has caused severe losses in all major areas of kiwifruit cultivation. Using a GFPuv-labeled strain of Psa, we monitored the invasion, colonization, and movement of the pathogen in kiwifruit twigs, leaves and veins. The pathogen can invade twigs through both wounds and natural openings; the highest number of Psa is obtained in cut tissues. We determined that, following spray inoculation, Psa-GFPuv could infect leaves and cause lesions in the presence and absence of wounds. Light and transmission electron microscopic observations showed that bacterial cells colonize both phloem and xylem vessels. Bacterial infection resulted in marked alterations of host tissues including the disintegration of organelles and degeneration of protoplasts and cell walls. Furthermore, low temperature was conducive to colonization and movement of Psa-GFPuv in kiwifruit tissues. Indeed, the pathogen migrated faster at 4°C than at 16°C or 25°C in twigs. However, the optimum temperature for colonization and movement of Psa in leaf veins was 16°C. Our results, revealing a better understanding of the Psa infection process, might contribute to develop more efficacious disease management strategies.


Journal of Plant Pathology | 2013

IDENTIFICATION AND CHARACTERIZATION OF THE CAUSAL AGENT OF BACTERIAL CANKER OF KIWIFRUIT IN THE SHAANXI PROVINCE OF CHINA

Zhongtao Zhao; Xiaoning Gao; Q.L. Huang; Lili Huang; Huqiang Qin; Zhensheng Kang

Bacterial canker of kiwifruit has become a serious disease problem in many countries, including China, but the causal agent in China has not yet been sufficiently characterized. In this study, the aetiology of bacterial canker was investigated in woody vines and leaves of the kiwifruit species Actinidia chinensis and A. deliciosa in the Chinese province of Shaanxi. Symptoms on woody vines appeared from September to June of the following year, and on leaves during May-July and September-October. More than 300 bacterial isolates were obtained from seven cultivars. Pure cultures were identified as Pseudomonas syringae pv. actinidiae (Psa) based on pathogenicity as well as morphological, physiological, biochemical, and genetic characteristics. In pathogenicity assays, symptoms on branches and leaves similar to those observed in the field on A. chinensis cv. Hongyang and A. deliciosa cv. Xuxiang 15 days post inoculation. The 16S rDNA sequences were 99.9% identical to those of the Psa strains available in GenBank. In addition, PCR analyses with five pairs of pathovar-specific primers provided a further proof of identification. Repetitive-sequence PCR fingerprint patterns of Psa strains isolated in Shaanxi using ERIC and BOX primer sets were consistent with those from New Zealand (2010) and Italy (2009), but slightly different from that of the Psa strain ICMP 9853 (Japan, 1984). The conclusion is that the causal agent of bacterial canker of kiwifruit in Shaanxi was identified as Psa strain identical with those currently spreading in New Zealand and Italy.


BioMed Research International | 2015

Endophytic Bacillus subtilis Strain E1R-J Is a Promising Biocontrol Agent for Wheat Powdery Mildew

Xiaoning Gao; Yufei Gong; Yunxia Huo; Qingmei Han; Zhensheng Kang; Lili Huang

In this study, the biocontrol efficacies of 14 endophytic bacterial strains were tested against Blumeria graminis f. sp. tritici (Bgt) in pot experiments under greenhouse conditions. Bacillus subtilis strain E1R-j significantly reduced disease index and exhibited the best control (90.97%). When different formulations of E1R-j were sprayed 24 h before Bgt inoculation, fermentation liquid without bacterial cell and crude protein suspension displayed the similar effects; and they reduced disease index more than bacterial cell suspension (109 cfu mL−1) and fermentation liquid without protein. The control effects were not significantly different between 1011 and 109 cfu mL−1 of bacterial cell suspension but were higher than 107 cfu mL−1. Further observations showed that conidial germination and appressorial formation of Bgt were retarded by spraying E1R-j 24 h before Bgt inoculation. Compared with the water check, conidial germination and appressorial formation were decreased by 43.3% and 42.7%, respectively. In the treatment with E1R-j, the number of houstoria significantly reduced and the speed of mycelial extension was slowed down in the wheat leaves. Scanning electron microscopy observation revealed that E1R-j significantly suppressed the conidial germination and caused rupture and deformation of germ tubes. On the surface of wheat leaves, mycelia and conidiophores became shrinking.


Current Microbiology | 2014

Agrobacterium tumefaciens-Mediated Transformation of the Causative Agent of Valsa canker of Apple Tree Valsa mali var. mali

Yang Hu; Qingqing Dai; Yangyang Liu; Zhe Yang; Na Song; Xiaoning Gao; Ralf T. Voegele; Zhensheng Kang; Lili Huang

Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/106 conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa.

Collaboration


Dive into the Xiaoning Gao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge