Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaopei Huang is active.

Publication


Featured researches published by Xiaopei Huang.


Journal of Virology | 2007

Innate Immune Response to Adenoviral Vectors Is Mediated by both Toll-Like Receptor-Dependent and -Independent Pathways

Jiangao Zhu; Xiaopei Huang; Yiping Yang

ABSTRACT Recombinant adenoviral vectors have been widely used for gene therapy applications and as vaccine vehicles for treating infectious diseases such as human immunodeficiency virus disease. The innate immune response to adenoviruses represents the most significant hurdle in clinical application of adenoviral vectors for gene therapy, but it is an attractive feature for vaccine development. How adenovirus activates innate immunity remains largely unknown. Here we showed that adenovirus elicited innate immune response through the induction of high levels of type I interferons (IFNs) by both plasmacytoid dendritic cells (pDCs) and non-pDCs such as conventional DCs and macrophages. The innate immune recognition of adenovirus by pDCs was mediated by Toll-like receptor 9 (TLR9) and was dependent on MyD88, whereas that by non-pDCs was TLR independent through cytosolic sensing of adenoviral DNA. Furthermore, type I IFNs were pivotal in innate and adaptive immune responses to adenovirus in vivo, and type I IFN blockade diminished immune responses, resulting in more stable transgene expression and reduction of inflammation. These findings indicate that adenovirus activates innate immunity by its DNA through TLR-dependent and -independent pathways in a cell type-specific fashion, and they highlight a critical role for type I IFNs in innate and adaptive immune responses to adenoviral vectors. Our results that suggest strategies to interfere with type I IFN pathway may improve the outcome of adenovirus-mediated gene therapy, whereas approaches to activate the type I IFN pathway may enhance vaccine potency.


Journal of Clinical Investigation | 2009

The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice.

Jiangao Zhu; Xiaopei Huang; Yiping Yang

Recombinant adeno-associated viruses (AAVs) have been used widely for in vivo gene therapy. However, adaptive immune responses to AAV have posed a significant hurdle in clinical application of AAV vectors. Recent advances have suggested a crucial role for innate immunity in shaping adaptive immune responses. How AAV activates innate immunity, and thereby promotes AAV-targeted adaptive immune responses, remains unknown. Here we show that AAV activates mouse plasmacytoid DCs (pDCs) via TLR9 to produce type I IFNs. In vivo, the TLR9-MyD88 pathway was crucial to the activation of CD8+ T cell responses to both the transgene product and the AAV capsid, leading to loss of transgene expression and the generation of transgene product-specific and AAV-neutralizing antibodies. We further demonstrate that TLR9-dependent activation of adaptive immunity targeting AAV was mediated by type I IFNs and that human pDCs could be activated in vitro to induce type I IFN production via TLR9. These results reveal an essential role for the TLR9-MyD88-type I IFN pathway in induction of adaptive immune responses to AAV and suggest that strategies that interfere with this pathway may improve the outcome of AAV-mediated gene therapy in humans.


Journal of Immunology | 2008

Direct Action of Type I IFN on NK Cells Is Required for Their Activation in Response to Vaccinia Viral Infection In Vivo

Jennifer Martinez; Xiaopei Huang; Yiping Yang

Type I IFN plays an important role in the activation of NK cells. However, the mechanism underlying type I IFN-dependent NK cell activation remains largely unknown. A recent report suggested that type I IFN acted on accessory dendritic cells, leading to IL-15 production, and that subsequent trans-presentation of IL-15 was required for NK cell activation upon stimulation with synthetic TLR ligands. It is not clear how type I IFN regulates NK cell activation in response to live pathogens. Using a murine model of infection with vaccinia virus (VV), we previously demonstrated a critical role for type I IFN in the innate immune control of VV infection. In this study, we first showed that type I IFN did not directly protect L929 cells from VV infection in vitro and that type I IFN-dependent innate immune control of VV infection in vivo was mediated by activated NK cells. We further demonstrated that direct action of type I IFN on NK cells, but not on dendritic cells, is required for the activation of NK cells in response to VV infection both in vitro and in vivo, leading to efficient VV clearance. Our findings may help design effective strategies for the control of poxviral infections in vivo.


Blood | 2009

A critical role for direct TLR2-MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection.

Michael Quigley; Jennifer Martinez; Xiaopei Huang; Yiping Yang

Recent advances have suggested a crucial role of the innate immunity in shaping adaptive immune responses. How activation of innate immunity promotes adaptive T-cell responses to pathogens in vivo is not fully understood. It has been thought that Toll-like receptor (TLR)-mediated control of adaptive T-cell responses is mainly achieved by the engagement of TLRs on antigen-presenting cells to promote their maturation and function. In this study, we showed that direct TLR2-myeloid differentiating factor 88 (MyD88) signaling in CD8 T cells was also required for their efficient clonal expansion by promoting the survival of activated T cells on vaccinia viral infection in vivo. Effector CD8 T cells that lacked direct TLR2-MyD88 signaling did not survive the contraction phase to differentiate into long-lived memory cells. Furthermore, we observed that direct TLR2 ligation on CD8 T cells promoted CD8 T-cell proliferation and survival in vitro in a manner dependent on the phosphatidylinositol 3-kinase (PI3K)-Akt pathway activation and that activation of Akt controlled memory cell formation in vivo. These results identify a critical role for intrinsic TLR2-MyD88 signaling and PI3K-Akt pathway activation in CD8 T-cell clonal expansion and memory formation in vivo and could lead to the development of new vaccine approaches.


PLOS Pathogens | 2010

Direct TLR2 Signaling Is Critical for NK Cell Activation and Function in Response to Vaccinia Viral Infection

Jennifer Martinez; Xiaopei Huang; Yiping Yang

Natural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections.


Journal of Immunology | 2007

CD4 T Cells Are Required for CD8 T Cell Survival during Both Primary and Memory Recall Responses

Patricia Novy; Michael Quigley; Xiaopei Huang; Yiping Yang

The role of CD4 T cell help in primary and secondary CD8 T cell responses to infectious pathogens remains incompletely defined. The primary CD8 T response to infections was initially thought to be largely independent of CD4 T cells, but it is not clear why some primary, pathogen-specific CD8 T cell responses are CD4 T cell dependent. Furthermore, although the generation of functional memory CD8 T cells is CD4 T cell help dependent, it remains controversial when the “help” is needed. In this study, we demonstrated that CD4 T cell help was not needed for the activation and effector differentiation of CD8 T cells during the primary response to vaccinia virus infection. However, the activated CD8 T cells showed poor survival without CD4 T cell help, leading to a reduction in clonal expansion and a diminished, but stable CD8 memory pool. In addition, we observed that CD4 T cell help provided during both the primary and secondary responses was required for the survival of memory CD8 T cells during recall expansion. Our study indicates that CD4 T cells play a crucial role in multiple stages of CD8 T cell response to vaccinia virus infection and may help to design effective vaccine strategies.


Human Gene Therapy | 2009

Innate Immune Recognition of Viruses and Viral Vectors

Xiaopei Huang; Yiping Yang

Recombinant viral vectors such as adenovirus and adenovirus-associated virus have been used widely as vehicles for gene therapy applications because of the high efficiency with which they transfer genes into a wide spectrum of cells in vivo. However, enthusiasm for the use of viral vectors in gene therapy has been tempered by significant problems of attendant host cellular and humoral immune responses that limit their safety and efficacy in vivo. Advances in immunology have suggested a crucial role for the innate immune system in the induction of immune responses to viruses. Thus, a better understanding of the mechanisms by which the hosts innate immune system recognizes viruses and viral vectors will help in the design of effective strategies to improve the outcome of viral vector-mediated gene therapy. In this review we first discuss our current understanding of innate immune recognition of viruses in general, and then focus on the innate immune responses to viral vectors for gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Toll-like receptor 8-mediated activation of murine plasmacytoid dendritic cells by vaccinia viral DNA

Jennifer Martinez; Xiaopei Huang; Yiping Yang

Plasmacytoid dendritic cells (pDCs) play a critical role in antiviral immunity through their ability to produce large amounts of type I IFNs. Activation of pDCs upon viral infection has been shown to be dependent on MyD88 and mediated by Toll-like receptors (TLR) 7 and 9, which sense viral ssRNA and CpG DNA, respectively. In this study, we showed that murine pDC recognition of vaccinia virus (VV), a dsDNA virus, was MyD88-dependent but TLR9-independent. Using HEK293 cells transfected with murine TLR7 or TLR8 and a NF-κB luciferase reporter, we demonstrated that stimulation of TLR8-, but not TLR7-, transfected cells with either VV or VV DNA resulted in substantial NF-κB activation, and that siRNA-mediated knockdown of TLR8 expression in pDCs led to a complete ablation of VV-induced type I IFN production. We further identified that the VV genome was rich in poly(A)/T sequences, and synthetic poly(A) and poly T oligodeoxynucleotides were capable of activating pDCs in a TLR8-dependent manner. In vivo, TLR8-MyD88-dependent pDC activation played a critical role in innate immune control of VV infection. Collectively, our data are unique in demonstrating that TLR8 is required for sensing poly(A)/T-rich DNA in pDCs, and that murine TLR8 is functional in the context of a viral infection.


Blood | 2012

Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation

Todd V. Brennan; Liwen Lin; Xiaopei Huang; Diana M. Cardona; Zhiguo Li; Keith Dredge; Nelson J. Chao; Yiping Yang

Graft-versus-host disease (GVHD) remains the most common cause of nonrelapse-related morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although T-cell depletion and intensive immunosuppression are effective in the control of GVHD, they are often associated with higher rates of infection and tumor recurrence. In this study, we showed that heparan sulfate (HS), an extracellular matrix component, can activate Toll-like receptor 4 on dendritic cells in vitro, leading to the enhancement of dendritic cell maturation and alloreactive T-cell responses. We further demonstrated in vivo that serum HS levels were acutely elevated at the onset of clinical GVHD in mice after allo-HSCT. Treatment with the serine protease inhibitor α1-antitrypsin decreased serum levels of HS, leading to a reduction in alloreactive T-cell responses and GVHD severity. Conversely, an HS mimetic that increased serum HS levels accelerated GVHD. In addition, in patients undergoing allo-HSCT for hematologic malignancies, serum HS levels were elevated and correlated with the severity of GVHD. These results identify a critical role for HS in promoting acute GVHD after allo-HSCT, and they suggest that modulation of HS release may have therapeutic potential for the control of clinical GVHD.


Molecular Therapy | 2008

A Critical Role for Type I IFN–dependent NK Cell Activation in Innate Immune Elimination of Adenoviral Vectors In Vivo

Jiangao Zhu; Xiaopei Huang; Yiping Yang

Recombinant adenoviruses have been used widely for gene therapy due to their high transduction efficiency in vivo. However, the attendant innate immune response to adenoviral vectors has limited their applications for in vivo gene therapy. Recent studies have shown that adenoviruses activate the innate immunity through both Toll-like receptor-dependent (TLR-dependent) and TLR-independent pathways, leading to the production of type I interferons (IFNs) and other inflammatory cytokines. Furthermore, type I IFNs play a pivotal role in innate immune elimination of adenoviral vectors in vivo. It remains to be defined how type I IFNs regulate innate immune clearance of adenoviral vectors. In this study, we showed in vivo that natural killer (NK) cells were activated and accumulated in the liver upon intravenous administration of adenoviral vectors, leading to the loss of adenoviral genome and the reduction of transgene expression. We further demonstrated that type I IFNs were critical for the activation of NK cells. This was achieved by direct action of type I IFNs on NK cells. Overall, our observations reveal a critical role for type I IFN-dependent NK cell activation in innate immune elimination of adenoviral vectors in vivo and may help design effective strategies to improve the outcome of adenovirus-mediated gene therapy.

Collaboration


Dive into the Xiaopei Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Martinez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Carl Fortin

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge