Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoping Bi is active.

Publication


Featured researches published by Xiaoping Bi.


Stem Cells and Development | 2013

Effects of a miR-31, Runx2, and Satb2 Regulatory Loop on the Osteogenic Differentiation of Bone Mesenchymal Stem Cells

Yuan Deng; Si Wu; Huifang Zhou; Xiaoping Bi; Yefei Wang; Yamin Hu; Ping Gu; Xianqun Fan

Recently, a cohort of miRNAs, including miR-31, was reported to be downregulated during osteogenic induction by miR microarray analysis. It remains unclear how changes in miR-31 expression collaborate with bone transcription factors to activate the biological pathways that regulate the differentiation of bone mesenchymal stem cells (BMSCs). Here the effects of miR-31, Runx2, and Satb2 on the osteogenic differentiation of BMSCs were investigated using mimics and inhibitors of miR-31, small interfering RNA for knockdown of Runx2 and plasmids for overexpression of Runx2. Our results showed that miR-31 expression decreased progressively in BMSC cultures during differentiation. Inhibition of miR-31 dramatically increased the alkaline phosphatase activity and mineralization in BMSC cultures. Additionally, miR-31 diminished the levels of the Satb2 protein without significantly affecting Satb2 mRNA levels, and Runx2 directly repressed miR-31 expression. Overexpression of miR-31 significantly reduced expression of the osteogenic transcription factors OPN, BSP, OSX, and OCN, but not Runx2. Furthermore, the high expression of miR-31 in BMSCs cultured in the proliferation medium repressed Satb2 protein levels, which may contribute to the maintenance of BMSCs in an undifferentiated state. In conclusion, our results suggest that a Runx2, Satb2, and miR-31 regulatory mechanism may play an important role in inducing BMSC osteogenic differentiation. The results of this study provide us with a better understanding of the molecular mechanisms that govern the BMSC fate.


Biochemical and Biophysical Research Communications | 2014

Effects of miR-31 on the osteogenesis of human mesenchymal stem cells.

Qing Xie; Zi Wang; Xiaoping Bi; Huifang Zhou; Yefei Wang; Ping Gu; Xianqun Fan

Exploring the molecular mechanisms that regulate the osteogenesis of human mesenchymal stem cells (hMSCs) will bring us more efficient methods for improving the treatment of bone-related diseases. In this study, we analyzed the effects of miR-31 on the osteogenesis of hMSCs. The overexpression of miR-31 repressed the osteogenesis of hMSCs, whereas the downregulation enhanced this process. SATB2 was testified to be a direct target of miR-31, and its effects on the osteogenesis were also described. Most importantly, the knockdown of SATB2 attenuated miR-31s osteogenic effects. Taken together, our findings suggest that miR-31 regulates the osteogenesis of hMSCs by targeting SATB2.


Acta Biomaterialia | 2012

A functional polymer designed for bone tissue engineering.

Zhengwei You; Xiaoping Bi; Xianqun Fan; Yadong Wang

Most synthetic polymers lack biological and chemical functionalities. This lack of functionality restricts the polymer properties and prevents them from controlling specific cell-material interactions. Polymers with free functional groups allow facile modifications, which can be used to control the biointerface. Here we created a functionalizable polymer, poly(fumaroyl bioxirane) maleate (PFM), with three free functional groups--hydroxyl, carboxyl and alkenyl--for bone tissue engineering. PFM was readily synthesized in two steps. PFM showed strain-dependent moduli with mechanical strength approaching native bones. PFM supported the adhesion, spreading, proliferation, and maturity of rat calvarial osteoblasts. The alkaline phosphatase activity of osteoblasts on PFM was significantly higher than that on tissue-culture-treated polystyrene in vitro. The physical, mechanical, and biological properties of PFM can be modulated by various functionalizations to explore methods to improve bone tissue engineering and regenerative medicine in general.


Acta Biomaterialia | 2014

A functional polyester carrying free hydroxyl groups promotes the mineralization of osteoblast and human mesenchymal stem cell extracellular matrix.

Xiaoping Bi; Zhengwei You; Jin Gao; Xianqun Fan; Yadong Wang

Functional groups can control biointerfaces and provide a simple way to make therapeutic materials. We recently reported the design and synthesis of poly(sebacoyl diglyceride) (PSeD) carrying a free hydroxyl group in its repeating unit. This paper examines the use of this polymer to promote biomineralization for application in bone tissue engineering. PSeD promoted more mineralization of extracellular matrix secreted by human mesenchymal stem cells and rat osteoblasts than poly(lactic-co-glycolic acid) (PLGA), which is currently widely used in bone tissue engineering. PSeD showed in vitro osteocompatibility and in vivo biocompatibility that matched or surpassed that of PLGA, as well as supported the attachment, proliferation and differentiation of rat osteoblasts and human mesenchymal stem cells. This demonstrates the potential of PSeD for use in bone regeneration.


Biomaterials | 2015

Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration

Qing Xie; Zi Wang; Yazhuo Huang; Xiaoping Bi; Huifang Zhou; Ming Lin; Zhang Yu; Yefei Wang; Ni Ni; Jing Sun; Si Wu; Zhengwei You; Chunyu Guo; Hao Sun; Yadong Wang; Ping Gu; Xianqun Fan

Mesenchymal stem cells (MSCs) have been extensively applied in the field of tissue regeneration. MSCs derived from various tissues exhibit different characteristics. In this study, a cluster of cells were isolated from human ethmoid sinus mucosa membrane and termed as hESMSCs. hESMSCs was demonstrated to have MSC-specific characteristics of self-renewal and tri-lineage differentiation. In particular, hESMSCs displayed strong osteogenic differentiation potential, and also remarkably promoted the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Next, hESMSCs were prepared into a cell sheet and combined with a PSeD scaffold seeded with rBMSCs to repair critical-sized calvarial defects in rats, which showed excellent reparative effects. Additionally, ELISA assays revealed that secreted cytokines, such as BMP-2, BMP-4 and bFGF, were higher in the hESMSCs conditioned medium, and immunohistochemistry validated that hESMSCs cell sheet promoted the expression of BMP signaling downstream genes in newly formed bone. In conclusion, hESMSCs were demonstrated to be a class of mesenchymal stem cells that possessed high self-renewal capacity along with strong osteogenic potential, and the cell sheet of hESMSCs could remarkably promote new bone regeneration, indicating that hESMSCs cell sheet could serve as a novel and promising alternative strategy in the management of bone regeneration.


Investigative Ophthalmology & Visual Science | 2011

In Vivo Efficacy of Bone Marrow Stromal Cells Coated with Beta-Tricalcium Phosphate for the Reconstruction of Orbital Defects in Canines

Huifang Zhou; Caiwen Xiao; Yefei Wang; Xiaoping Bi; Shengfang Ge; Xianqun Fan

PURPOSE To repair the segmental orbital rim defects of dogs with three-dimensional (3D) tissue-engineered constructs derived from culturing autogenous bone marrow stromal cells (BMSCs) on β-tricalcium phosphate (β-TCP) scaffolds. METHODS A 25-mm segmental defect on the canine inferior orbital rim was created. BMSCs were isolated and osteogenically induced in vitro, then were seeded onto 3D β-TCP scaffolds and implanted to repair the orbital defects after 5 days of cultivation. The group of noninduced BMSC/β-TCP, β-TCP alone, and the normal inferior orbital rim were set as controls. The orbits of all groups had spiral computed tomography (CT) scans 1, 4, 8, and 12 weeks after surgery. Gross examination, bone density, microCT, and histologic measurements were performed 12 weeks after surgery. The results were analyzed to evaluate the extent of bone repair. RESULTS Twelve weeks after surgery, CT examination revealed good inferior orbital rim recovery in the induced BMSC/β-TCP group, and the bone density was 0.30 ± 0.03 g/cm(2) with no dominant variance, compared with the normal control (P > 0.05). MicroCT and histologic examination confirmed that the implantations led to good repair of the defects. Pore-like spongy bone surrounded the implants through the section plane, with some residue remaining in the center. In contrast, the noninduced BMSC/β-TCP implants were not fully repaired, and nonunion was evident. The bony density for this group was 0.23 ± 0.07 g/cm(2), which was significantly lower than that of the control group (P < 0.05). The β-TCP group was largely held by fibrous tissues. CONCLUSIONS Engineered bone from induced BMSCs and 3D biodegradable β-TCP can efficiently repair critical-sized segmental orbital defects in dogs.


Scientific Reports | 2017

Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration

Qing Xie; Wei Wei; Jing Ruan; Yi Ding; Ai Zhuang; Xiaoping Bi; Hao Sun; Ping Gu; Zi Wang; Xianqun Fan

Increasing evidence has indicated that bone morphogenetic protein 2 (BMP2) coordinates with microRNAs (miRNAs) to form intracellular networks regulating mesenchymal stem cells (MSCs) osteogenesis. This study aimed to identify specific miRNAs in rat adipose-derived mesenchymal stem cells (ADSCs) during BMP2-induced osteogenesis, we selected the most significantly down-regulated miRNA, miR-146a, to systematically investigate its role in regulating osteogenesis and bone regeneration. Overexpressing miR-146a notably repressed ADSC osteogenesis, whereas knocking down miR-146a greatly promoted this process. Drosophila mothers against decapentaplegic protein 4 (SMAD4), an important co-activator in the BMP signaling pathway, was miR-146a’s direct target and miR-146a exerted its repressive effect on SMAD4 through interacting with 3′-untranslated region (3′-UTR) of SMAD4 mRNA. Furthermore, knocking down SMAD4 attenuated the ability of miR-146a inhibitor to promote ADSC osteogenesis. Next, transduced ADSCs were incorporated with poly(sebacoyl diglyceride) (PSeD) porous scaffolds for repairing critical-sized cranial defect, the treatment of miR-146a inhibitor greatly enhanced ADSC-mediated bone regeneration with higher expression levels of SMAD4, Runt-related transcription factor 2 (Runx2) and Osterix in newly formed bone. In summary, our study showed that miR-146a negatively regulates the osteogenesis and bone regeneration from ADSCs both in vitro and in vivo.


International Journal of Nanomedicine | 2016

Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration

Zi Wang; Ming Lin; Qing Xie; Hao Sun; Yazhuo Huang; Dandan Zhang; Zhang Yu; Xiaoping Bi; Junzhao Chen; Jing Wang; Wodong Shi; Ping Gu; Xianqun Fan

Background Tissue engineering has become a promising therapeutic approach for bone regeneration. Nanofibrous scaffolds have attracted great interest mainly due to their structural similarity to natural extracellular matrix (ECM). Poly(lactide-co-ε-caprolactone) (PLCL) has been successfully used in bone regeneration, but PLCL polymers are inert and lack natural cell recognition sites, and the surface of PLCL scaffold is hydrophobic. Silk fibroin (SF) is a kind of natural polymer with inherent bioactivity, and supports mesenchymal stem cell attachment, osteogenesis, and ECM deposition. Therefore, we fabricated hybrid nanofibrous scaffolds by adding different weight ratios of SF to PLCL in order to find a scaffold with improved properties for bone regeneration. Methods Hybrid nanofibrous scaffolds were fabricated by blending different weight ratios of SF with PLCL. Human adipose-derived stem cells (hADSCs) were seeded on SF/PLCL nanofibrous scaffolds of various ratios for a systematic evaluation of cell adhesion, proliferation, cytotoxicity, and osteogenic differentiation; the efficacy of the composite of hADSCs and scaffolds in repairing critical-sized calvarial defects in rats was investigated. Results The SF/PLCL (50/50) scaffold exhibited favorable tensile strength, surface roughness, and hydrophilicity, which facilitated cell adhesion and proliferation. Moreover, the SF/PLCL (50/50) scaffold promoted the osteogenic differentiation of hADSCs by elevating the expression levels of osteogenic marker genes such as BSP, Ocn, Col1A1, and OPN and enhanced ECM mineralization. In vivo assays showed that SF/PLCL (50/50) scaffold improved the repair of the critical-sized calvarial defect in rats, resulting in increased bone volume, higher trabecular number, enhanced bone mineral density, and increased new bone areas, compared with the pure PLCL scaffold. Conclusion The SF/PLCL (50/50) nanofibrous scaffold facilitated hADSC proliferation and osteogenic differentiation in vitro and further promoted new bone formation in vivo, suggesting that the SF/PLCL (50/50) nanofibrous scaffold holds great potential in bone tissue regeneration.


ACS Applied Materials & Interfaces | 2016

Poly(sebacoyl diglyceride) Cross-Linked by Dynamic Hydrogen Bonds: A Self-Healing and Functionalizable Thermoplastic Bioelastomer.

Shuo Chen; Xiaoping Bi; Lijie Sun; Jin Gao; Peng Huang; Xianqun Fan; Zhengwei You; Yadong Wang

Biodegradable and biocompatible elastomers (bioelastomers) could resemble the mechanical properties of extracellular matrix and soft tissues and, thus, are very useful for many biomedical applications. Despite significant advances, tunable bioelastomers with easy processing, facile biofunctionalization, and the ability to withstand a mechanically dynamic environment have remained elusive. Here, we reported new dynamic hydrogen-bond cross-linked PSeD-U bioelastomers possessing the aforementioned features by grafting 2-ureido-4[1H]-pyrimidinones (UPy) units with strong self-complementary quadruple hydrogen bonds to poly(sebacoyl diglyceride) (PSeD), a refined version of a widely used bioelastomer poly(glycerol sebacate) (PGS). PSeD-U polymers exhibited stronger mechanical strength than their counterparts of chemically cross-linked PSeD and tunable elasticity by simply varying the content of UPy units. In addition to the good biocompatibility and biodegradability as seen in PSeD, PSeD-U showed fast self-healing (within 30 min) at mild conditions (60 °C) and could be readily processed at moderate temperature (90-100 °C) or with use of solvent casting at room temperature. Furthermore, the free hydroxyl groups of PSeD-U enabled facile functionalization, which was demonstrated by the modification of PSeD-U film with FITC as a model functional molecule.


Scientific Reports | 2015

A regulatory loop containing miR-26a, GSK3β and C/EBPα regulates the osteogenesis of human adipose-derived mesenchymal stem cells

Zi Wang; Qing Xie; Zhang Yu; Huifang Zhou; Yazhuo Huang; Xiaoping Bi; Yefei Wang; Wodong Shi; Hao Sun; Ping Gu; Xianqun Fan

Elucidating the molecular mechanisms responsible for osteogenesis of human adipose-derived mesenchymal stem cells (hADSCs) will provide deeper insights into the regulatory mechanisms of this process and help develop more efficient methods for cell-based therapies. In this study, we analysed the role of miR-26a in the regulation of hADSC osteogenesis. The endogenous expression of miR-26a increased during the osteogenic differentiation. The overexpression of miR-26a promoted hADSC osteogenesis, whereas osteogenesis was repressed by miR-26a knockdown. Additionally, miR-26a directly targeted the 3′UTR of the GSK3β, suppressing the expression of GSK3β protein. Similar to the effect of overexpressing miR-26a, the knockdown of GSK3β promoted osteogenic differentiation, whereas GSK3β overexpression inhibited this process, suggesting that GSK3β acted as a negative regulator of hADSC osteogenesis. Furthermore, GSK3β influences Wnt signalling pathway by regulating β-catenin, and subsequently altered the expression of its downstream target C/EBPα. In turn, C/EBPα transcriptionally regulated the expression of miR-26a by physically binding to the CTDSPL promoter region. Taken together, our data identified a novel feedback regulatory circuitry composed of miR-26a, GSK3β and C/EBPα, the function of which might contribute to the regulation of hADSC osteogenesis. Our findings provided new insights into the function of miR-26a and the mechanisms underlying osteogenesis of hADSCs.

Collaboration


Dive into the Xiaoping Bi's collaboration.

Top Co-Authors

Avatar

Xianqun Fan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Huifang Zhou

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ping Gu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yefei Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Xie

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Caiwen Xiao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yadong Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hao Sun

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zi Wang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge