Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoping Qi is active.

Publication


Featured researches published by Xiaoping Qi.


Annals of Neurology | 2002

Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy

John Guy; Xiaoping Qi; Francesco Pallotti; Eric A. Schon; Giovanni Manfredi; Valerio Carelli; Andrea Martinuzzi; William W. Hauswirth; Alfred S. Lewin

A G to A transition at nucleotide 11778 in the ND4 subunit gene of complex I was the first point mutation in the mitochondrial genome linked to a human disease. It causes Leber Hereditary Optic Neuropathy, a disorder with oxidative phosphorylation deficiency. To overcome this defect, we made a synthetic ND4 subunit compatible with the “universal” genetic code and imported it into mitochondria by adding a mitochondrial targeting sequence. For detection we added a FLAG tag. This gene was inserted in an adeno‐associated viral vector. The ND4FLAG protein was imported into the mitochondria of cybrids harboring the G11778A mutation, where it increased their survival rate threefold, under restrictive conditions that forced the cells to rely predominantly on oxidative phosphorylation to produce ATP. Since assays of complex I activity were normal in G11778A cybrids we focused on changes in ATP synthesis using complex I substrates. The G11778A cybrids showed a 60% reduction in the rate of ATP synthesis. Relative to mock‐transfected G11778A cybrids, complemented G11778A cybrids showed a threefold increase in ATP synthesis, to a level indistinguishable from that in cybrids containing normal mitochondrial DNA. Restoration of respiration by allotopic expression opens the door for gene therapy of Leber Hereditary Optic Neuropathy.


Journal of Biological Chemistry | 2006

Mitochondrial Protein Nitration Primes Neurodegeneration in Experimental Autoimmune Encephalomyelitis

Xiaoping Qi; Alfred S. Lewin; L. Sun; William W. Hauswirth; John Guy

The mechanisms of axonal and neuronal degeneration causing visual and neurologic disability in multiple sclerosis are poorly understood. Here we explored the contribution of mitochondria to neurodegeneration in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Oxidative injury to the murine mitochondrion preceded the infiltration of inflammatory cells, classically heralded as the mediators of demyelination and axonal injury by transection. Nitration of mitochondrial proteins affected key subunits of complexes I and IV of the respiratory chain and a chaperone critical to the stabilization and translocation of proteins into the organelle. Oxidative products were associated with loss of mitochondrial membrane potential and apoptotic cell death. Reductions in the rate of synthesis of adenosine triphosphate were severe and even greater than those associated with disorders caused by mutated mitochondrial DNA. Mitochondrial vacuolization, swelling, and dissolution of cristae occurred in axons as early as 3 days after sensitization for experimental autoimmune encephalomyelitis. Our findings implicate mitochondrial dysfunction induced by protein inactivation and mediated by oxidative stress initiates a cascade of molecular events leading to apoptosis and neurodegeneration in experimental autoimmune encephalomyelitis that is not mediated by inflammatory cells.


Autophagy | 2014

Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD

Sayak K. Mitter; Chunjuan Song; Xiaoping Qi; Haoyu Mao; Haripriya Vittal Rao; Debra Akin; Alfred S. Lewin; Maria B. Grant; William A. Dunn; Jindong Ding; Catherine Bowes Rickman; Michael E. Boulton

Autophagic dysregulation has been suggested in a broad range of neurodegenerative diseases including age-related macular degeneration (AMD). To test whether the autophagy pathway plays a critical role to protect retinal pigmented epithelial (RPE) cells against oxidative stress, we exposed ARPE-19 and primary cultured human RPE cells to both acute (3 and 24 h) and chronic (14 d) oxidative stress and monitored autophagy by western blot, PCR, and autophagosome counts in the presence or absence of autophagy modulators. Acute oxidative stress led to a marked increase in autophagy in the RPE, whereas autophagy was reduced under chronic oxidative stress. Upregulation of autophagy by rapamycin decreased oxidative stress-induced generation of reactive oxygen species (ROS), whereas inhibition of autophagy by 3-methyladenine (3-MA) or by knockdown of ATG7 or BECN1 increased ROS generation, exacerbated oxidative stress-induced reduction of mitochondrial activity, reduced cell viability, and increased lipofuscin. Examination of control human donor specimens and mice demonstrated an age-related increase in autophagosome numbers and expression of autophagy proteins. However, autophagy proteins, autophagosomes, and autophagy flux were significantly reduced in tissue from human donor AMD eyes and 2 animal models of AMD. In conclusion, our data confirm that autophagy plays an important role in protection of the RPE against oxidative stress and lipofuscin accumulation and that impairment of autophagy is likely to exacerbate oxidative stress and contribute to the pathogenesis of AMD.


Annals of Neurology | 2003

Suppression of complex I gene expression induces optic neuropathy

Xiaoping Qi; Alfred S. Lewin; William W. Hauswirth; John Guy

Optic nerve degeneration is a feature common to diseases with mutations in genes that encode complex I of the respiratory chain. Vulnerability of this central nervous system tract is a mystery, because of the paucity of animal models used to investigate effects of the mutated DNA in tissues rather than isolated in cultured cells. Using a ribozyme designed to degrade the mRNA encoding a critical nuclear‐encoded subunit gene of complex I (NDUFA1), we tested whether oxidative phosphorylation deficiency can recapitulate the optic neuropathy of mitochondrial disease. Injection of adenoassociated virus expressing this ribozyme led to axonal destruction and demyelination, the hallmarks of Leber hereditary optic neuropathy. Ann Neurol 2003


Annals of Neurology | 2004

SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I

Xiaoping Qi; Alfred S. Lewin; L. Sun; William W. Hauswirth; John Guy

Mutations in genes encoding the NADH ubiquinone oxidoreductase, complex I of the respiratory chain, cause a diverse group of diseases. They include Leber hereditary optic neuropathy, Leigh syndrome, and mitochondrial encephalomyopathy with lactic acidosis and stroke‐like episodes. There is no effective treatment for these or any other mitochondrial disorder. Using a unique animal model of severe complex I deficiency induced by ribozymes targeted against a critical complex I subunit gene (NDUFA1), we attempted rescue of the optic nerve degeneration associated with Leber hereditary optic neuropathy. We used adenoassociated virus to deliver the human gene for SOD2 to the visual system of disease‐induced mice. Relative to mock infection, SOD2 reduced apoptosis of retinal ganglion cells and degeneration of optic nerve fibers, the hallmarks of this disease. Rescue of this animal model supports a critical role for oxidative injury in disorders with complex I deficiency and shows that a respiratory deficit may be effectively treated in mammals, thus offering hope to patients. Ann Neurol 2004;56:182–191


Investigative Ophthalmology & Visual Science | 2009

Efficiency and Safety of AAV-Mediated Gene Delivery of the Human ND4 Complex I Subunit in the Mouse Visual System

John Guy; Xiaoping Qi; Rajeshwari D. Koilkonda; Tania Arguello; Tsung Han Chou; Marco Ruggeri; Vittorio Porciatti; Alfred S. Lewin; William W. Hauswirth

PURPOSE To evaluate the efficiency and safety of AAV-mediated gene delivery of a normal human ND4 complex I subunit in the mouse visual system. METHODS A nuclear encoded human ND4 subunit fused to the ATPc mitochondrial targeting sequence and FLAG epitope were packaged in AAV2 capsids that were injected into the right eyes of mice. AAV-GFP was injected into the left eyes. One month later, pattern electroretinography (PERG), rate of ATP synthesis, gene expression, and incorporation of the human ND4 subunit into the murine complex I were evaluated. Quantitative analysis of ND4FLAG-injected eyes was assessed compared with green fluorescent protein (GFP)-injected eyes. RESULTS Rates of ATP synthesis and PERG amplitudes were similar in ND4FLAG- and GFP-inoculated eyes. PERG latency was shorter in eyes that received ND4FLAG. Immunoprecipitated murine complex I gave the expected 52-kDa band of processed human ND4FLAG. Confocal microscopy revealed perinuclear expression of FLAG colocalized with mitochondria-specific fluorescent dye. Transmission electron microscopy revealed FLAG immunogold within mitochondria. Compared with Thy1.2-positive retinal ganglion cells (RGCs), quantification was 38% for FLAG-positive RGCs and 65% for GFP-positive RGCs. Thy1.2 positive-RGC counts in AAV-ND4FLAG were similar to counts in control eyes injected with AAV-GFP. CONCLUSIONS Human ND4 was properly processed and imported into the mitochondria of RGCs and axons of mouse optic nerve after intravitreal injection. Although it had approximately two-thirds the efficiency of GFP, the expression of normal human ND4 in murine mitochondria did not induce the loss of RGCs, ATP synthesis, or PERG amplitude, suggesting that allotopic ND4 may be safe for the treatment of patients with Leber hereditary optic neuropathy.


Advances in Experimental Medicine and Biology | 2012

Autophagy in the retina: A potential role in age-related macular degeneration

Sayak K. Mitter; Haripriya Vittal Rao; Xiaoping Qi; Jun Cai; Andrew Sugrue; William A. Dunn; Maria B. Grant; Michael E. Boulton

Age-related macular degeneration (AMD) is associated with multiple genetic and cellular defects which lead to a common endpoint, retinal degeneration. Aging and oxidative stress, significant features in the pathogenesis of AMD, are associated with an increase in damaged intracellular organelles and defective autophagy flux in a range of age-related and neurodegenerative diseases. Autophagy is a key process in the maintenance of cellular homeostasis that serves to remove dysfunctional organelles and proteins. Autophagy proteins are strongly expressed in the retina and there is now strong evidence that mitochondrial damage and defective autophagy are a feature of the aging retina and that this is further exacerbated in AMD. It is apparent that autophagy makes a significant contribution to lipofuscin accumulation in the RPE. Pharmacological manipulation of autophagy may offer an alternative therapeutic target in AMD.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology

Peng Hu; Rolf Herrmann; Amanda Bednar; Peter Saloupis; Mary A. Dwyer; Ping Yang; Xiaoping Qi; Russell S. Thomas; Glenn J. Jaffe; Michael E. Boulton; Donald P. McDonnell; Goldis Malek

Significance Age-related Macular Degeneration (AMD) is the leading cause of vision loss. In its early stage, extracellular deposits accumulate below the retinal pigment epithelial layer (RPE), nurse cells to the retina. Identification of therapeutic treatments targeting deposit removal, which when left untreated exacerbate RPE and retinal damage, necessitates the discovery of pathways regulating deposit formation. We show that the activity of a nuclear receptor, essential to xenobiotic/toxin metabolism and cellular debris clearance, is critical to maintaining RPE cell health and that its deficiency in mice causes AMD pathology. This model provides a better understanding of AMD pathogenic mechanisms and a platform for testing novel therapeutics. The aryl hydrocarbon receptor (AhR) is a nuclear receptor that regulates xenobiotic metabolism and detoxification. Herein, we report a previously undescribed role for the AhR signaling pathway as an essential defense mechanism in the pathogenesis of early dry age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We found that AhR activity and protein levels in human retinal pigment epithelial (RPE) cells, cells vulnerable in AMD, decrease with age. This finding is significant given that age is the most established risk factor for development of AMD. Moreover, AhR−/− mice exhibit decreased visual function and develop dry AMD-like pathology, including disrupted RPE cell tight junctions, accumulation of RPE cell lipofuscin, basal laminar and linear-like deposit material, Bruch’s membrane thickening, and progressive RPE and choroidal atrophy. High-serum low-density lipoprotein levels were also observed in AhR−/− mice. In its oxidized form, this lipoprotein can stimulate increased secretion of extracellular matrix molecules commonly found in deposits from RPE cells, in an AhR-dependent manner. This study demonstrates the importance of cellular clearance via the AhR signaling pathway in dry AMD pathogenesis, implicating AhR as a potential target, and the mouse model as a useful platform for validating future therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Pathogenic role of diabetes-induced PPAR-α down-regulation in microvascular dysfunction

Yang Hu; Ying Chen; Lexi Ding; Xuemin He; Yusuke Takahashi; Yang Gao; Wei Shen; Rui Cheng; Qian Chen; Xiaoping Qi; Michael E. Boulton; Jian Xing Ma

Significance This study investigated the expression and function of peroxisome proliferator-activated receptor alpha (PPARα) in the retina and its role in diabetic retinopathy. In both type 1 and type 2 diabetes models, expression of PPARα was significantly down-regulated in the retina. PPARα knockout exacerbated diabetes-induced retinal vascular leakage and retinal inflammation, while over-expression of PPARα in the retina of diabetic rats significantly alleviated diabetic retinopathy. This study reveals that PPARα has an anti-inflammatory function in the retina. These findings also suggest that diabetes-induced down-regulation of PPARα plays an important role in diabetic retinopathy and represents a novel therapeutic target for diabetic retinopathy. Two independent clinical studies have reported that fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has robust therapeutic effects on microvascular complications of diabetes, including diabetic retinopathy (DR) in type 2 diabetic patients. However, the expression and function of PPARα in the retina are unclear. Here, we demonstrated that PPARα is expressed in multiple cell types in the retina. In both type 1 and type 2 diabetes models, expression of PPARα, but not PPARβ/δ or PPARγ, was significantly down-regulated in the retina. Furthermore, high-glucose medium was sufficient to down-regulate PPARα expression in cultured retinal cells. To further investigate the role of PPARα in DR, diabetes was induced in PPARα knockout (KO) mice and wild-type (WT) mice. Diabetic PPARα KO mice developed more severe DR, as shown by retinal vascular leakage, leukostasis, pericyte loss, capillary degeneration, and over-expression of inflammatory factors, compared with diabetic WT mice. In addition, overexpression of PPARα in the retina of diabetic rats significantly alleviated diabetes-induced retinal vascular leakage and retinal inflammation. Furthermore, PPARα overexpression inhibited endothelial cell migration and proliferation. These findings revealed that diabetes-induced down-regulation of PPARα plays an important role in DR. Up-regulation or activation of PPARα may represent a novel therapeutic strategy for DR.


PLOS ONE | 2011

PEDF Regulates Vascular Permeability by a γ-Secretase-Mediated Pathway

Jun Cai; L. Wu; Xiaoping Qi; Sergio Li Calzi; Sergio Caballero; Lynn C. Shaw; Qing Ruan; Maria B. Grant; Michael E. Boulton

Increased vascular permeability is an inciting event in many vascular complications including diabetic retinopathy. We have previously reported that pigment epithelium-derived factor (PEDF) is able to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis through a novel γ-secretase-dependent pathway. In this study, we asked whether inhibition of VEGF-induced permeability by PEDF is also γ-secretase-mediated and to dissect the potential mechanisms involved. Vascular permeability was assessed in vitro by measuring transendothelial resistance and paracellular permeability to dextran and in vivo by following leakage of intravenous FITC-labelled albumin into the retina in the presence or absence of VEGF and PEDF in varying combinations. Experiments were undertaken in the presence or absence of a γ-secretase inhibitor. To assess junctional integrity immunohistochemistry for the adherens junction (AJ) proteins, VE-cadherin and β-catenin, and the tight junction (TJ) protein, claudin-5 was undertaken using cultured cells and flat mount retinas. Protein expression and the association between AJ proteins, VEGF receptors (VEGFRs) and γ-secretase constituents were determined by immunoprecipitation and Western Blot analysis. In selected experiments the effect of hypoxia on junctional integrity was also assessed. PEDF inhibition of VEGF-induced permeability, both in cultured microvascular endothelial cell monolayers and in vivo in the mouse retinal vasculature, is mediated by γ-secretase. PEDF acted by a) preventing dissociation of AJ and TJ proteins and b) regulating both the association of VEGF receptors with AJ proteins and the subsequent phosphorylation of the AJ proteins, VE-cadherin and β-catenin. Association of γ-secretase with AJ proteins appears to be critical in the regulation of vascular permeability. Although hypoxia increased VEGFR expression there was a significant dissociation of VEGFR from AJ proteins. In conclusion, PEDF regulates VEGF-induced vascular permeability via a novel γ-secretase dependent pathway and targeting downstream effectors of PEDF action may represent a promising therapeutic strategy for preventing or ameliorating increased vascular permeability.

Collaboration


Dive into the Xiaoping Qi's collaboration.

Top Co-Authors

Avatar

John Guy

Bascom Palmer Eye Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Sun

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Jun Cai

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge