Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoqiang Han is active.

Publication


Featured researches published by Xiaoqiang Han.


Circulation Research | 2013

Enhanced Efferocytosis of Apoptotic Cardiomyocytes Through Myeloid-Epithelial-Reproductive Tyrosine Kinase Links Acute Inflammation Resolution to Cardiac Repair After Infarction

Elaine Wan; Xin Yi Yeap; Shirley Dehn; Rachael L. Terry; Margaret L. Novak; Shuang Zhang; Shinichi Iwata; Xiaoqiang Han; Shunichi Homma; Konstantinos Drosatos; Jon W. Lomasney; David M. Engman; Stephen D. Miller; Douglas E. Vaughan; John P. Morrow; Raj Kishore; Edward B. Thorp

Rationale: Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. Objective: We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. Methods and Results: In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6cLO myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk+/+ marrow into Mertk−/− mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. Conclusions: These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.


Circulation Research | 2013

Enhanced Efferocytosis of Apoptotic Cardiomyocytes Through MER Tyrosine Kinase Links Acute Inflammation Resolution to Cardiac Repair After Infarction

Elaine Wan; Xin-Yi Yeap; Shirley Dehn; Rachael L. Terry; Margaret L. Novak; Shuang Zhang; Shinichi Iwata; Xiaoqiang Han; Shunichi Homma; Konstantinos Drosatos; Jon W. Lomasney; David M. Engman; Stephen D. Miller; Douglas E. Vaughan; John P. Morrow; Raj Kishore; Edward B. Thorp

Rationale: Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. Objective: We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. Methods and Results: In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6cLO myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk; reciprocal transplantation of Mertk+/+ marrow into Mertk−/− mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. Conclusions: These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.


The Lancet | 2013

Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: a retrospective analysis

Richard K. Burt; Maria Carolina Oliveira; Sanjiv J. Shah; Daniela A. Moraes; Belinda Pinto Simões; Mihai Gheorghiade; James W. Schroeder; Eric Ruderman; Dominique Farge; Z Jessie Chai; Zora Marjanovic; Sandeep Jain; Amy Morgan; Francesca Milanetti; Xiaoqiang Han; Borko Jovanovic; Irene B. Helenowski; Júlio C. Voltarelli

BACKGROUND Autologous haemopoietic stem-cell transplantation (HSCT) benefits patients with systemic sclerosis but has been associated with significant treatment-related mortality and failure to improve diffusion capacity of carbon monoxide (DLCO). We aimed to assess efficacy of HSCT and use of rigorous cardiac screening in this group. METHODS We assessed patients with diffuse systemic sclerosis or limited systemic sclerosis and interstitial lung disease who were treated with HSCT as part of a study or on a compassionate basis at Northwestern University (Chicago, IL, USA) or the University of São Paulo (Ribeirão Preto, Brazil). Unselected peripheral blood stem cells were harvested with cyclophosphamide (2 g/m(2)) and filgrastim. The transplant regimen was a non-myeloablative regimen of cyclophosphamide (200 mg/kg) and rabbit anti-thymocyte globulin (rATG; 4·5-6·5 mg/kg). We followed patients up to 5 years for overall survival, relapse-free survival, modified Rodnan skin score, and pulmonary function tests. FINDINGS Five (6%) of 90 patients died from treatment-related causes. Despite standard guidelines that recommend echocardiogram for screening before transplantation, four treatment-related deaths occurred because of cardiovascular complications (one constrictive pericarditis, two right heart failures without underlying infection, and one heart failure during mobilisation), and one death was secondary to sepsis without documented underlying heart disease. Kaplan-Meier analysis showed survival was 78% at 5 years (after eight relapse-related deaths) and relapse-free survival was 70% at 5 years. Compared with baseline, we noted improvements after HSCT in modified Rodnan skin scores at 1 year (58 patients; p<0·0001), 2 years (42 patients; p<0·0001), and 3 years (27 patients; p<0·0001) and forced vital capacity at 1 year (58 patients; p=0·009), 2 years (40 patients; p=0·02), and 3 years (28 patients; p=0·004), but total lung capacity and DLCO were not improved significantly after HSCT. Overall mean DLCO was significantly improved in patients with normal baseline echocardiograms (p=0·005) or electrocardiographs (p=0·05). INTERPRETATION Autologous HSCT with a non-myeloablative regimen of cyclophosphamide and rATG with a non-selected autograft results in sustained improvement in skin thickness and forced vital capacity. DLCO is affected by baseline cardiac function. Guidelines for cardiac screening of patients with systemic sclerosis to assess treatment-related risk from pulmonary artery hypertension, primary cardiac involvement, or pericardial disease should be reconsidered and updated. FUNDING None.


JAMA | 2015

Association of Nonmyeloablative Hematopoietic Stem Cell Transplantation With Neurological Disability in Patients With Relapsing-Remitting Multiple Sclerosis

Richard K. Burt; Roumen Balabanov; Xiaoqiang Han; Basil Sharrack; Amy Morgan; Kathleeen Quigley; Kim Yaung; Irene B. Helenowski; Borko Jovanovic; Dzemila Spahovic; Indira Arnautovic; Daniel C. Lee; Brandon Benefield; Stephen Futterer; Maria Carolina Oliveira; Joachim Burman

IMPORTANCE No current therapy for relapsing-remitting multiple sclerosis (MS) results in significant reversal of disability. OBJECTIVE To determine the association of nonmyeloablative hematopoietic stem cell transplantation with neurological disability and other clinical outcomes in patients with MS. DESIGN, SETTING, AND PARTICIPANTS Case series of patients with relapsing-remitting MS (n = 123) or secondary-progressive MS (n = 28) (mean age, 36 years; range, 18-60 years; 85 women) treated at a single US institution between 2003 and 2014 and followed up for 5 years. Final follow-up was completed in June 2014. INTERVENTIONS Treatment with cyclophosphamide and alemtuzumab (22 patients) or cyclophosphamide and thymoglobulin (129 patients) followed by infusion of unmanipulated peripheral blood stem cells. MAIN OUTCOMES AND MEASURES Primary end point was reversal or progression of disability measured by change in the Expanded Disability Status Scale (EDSS) score of 1.0 or greater (score range, 0-10). Secondary outcomes included changes in the Neurologic Rating Scale (NRS) score of 10 or greater (score range, 0-100), Multiple Sclerosis Functional Composite (MSFC) score, quality-of-life Short Form 36 questionnaire scores, and T2 lesion volume on brain magnetic resonance imaging scan. RESULTS Outcome analysis was available for 145 patients with a median follow-up of 2 years and a mean of 2.5 years. Scores from the EDSS improved significantly from a pretransplant median of 4.0 to 3.0 (interquartile range [IQR], 1.5 to 4.0; n = 82) at 2 years and to 2.5 (IQR, 1.9 to 4.5; n = 36) at 4 years (P < .001 at each assessment). There was significant improvement in disability (decrease in EDSS score of ≥1.0) in 41 patients (50%; 95% CI, 39% to 61%) at 2 years and in 23 patients (64%; 95% CI, 46% to 79%) at 4 years. Four-year relapse-free survival was 80% and progression-free survival was 87%. The NRS scores improved significantly from a pretransplant median of 74 to 88.0 (IQR, 77.3 to 93.0; n = 78) at 2 years and to 87.5 (IQR, 75.0 to 93.8; n = 34) at 4 years (P < .001 at each assessment). The median MSFC scores were 0.38 (IQR, -0.01 to 0.64) at 2 years (P < .001) and 0.45 (0.04 to 0.60) at 4 years (P = .02). Total quality-of-life scores improved from a mean of 46 (95% CI, 43 to 49) pretransplant to 64 (95% CI, 61 to 68) at a median follow-up of 2 years posttransplant (n = 132) (P < .001). There was a decrease in T2 lesion volume from a pretransplant median of 8.57 cm3 (IQR, 2.78 to 22.08 cm3) to 5.74 cm3 (IQR, 1.88 to 14.45 cm3) (P < .001) at the last posttransplant assessment (mean follow-up, 27 months; n = 128). CONCLUSIONS AND RELEVANCE Among patients with relapsing-remitting MS, nonmyeloablative hematopoietic stem cell transplantation was associated with improvement in neurological disability and other clinical outcomes. These preliminary findings from this uncontrolled study require confirmation in randomized trials.


Journal of Tissue Engineering and Regenerative Medicine | 2010

Capturing the stem cell paracrine effect using heparin-presenting nanofibres to treat cardiovascular diseases

Matthew J. Webber; Xiaoqiang Han; S. N. Prasanna Murthy; Kanya Rajangam; Samuel I. Stupp; Jon W. Lomasney

The mechanism for stem cell‐mediated improvement following acute myocardial infarction has been actively debated. We support hypotheses that the stem cell effect is primarily paracrine factor‐linked. We used a heparin‐presenting injectable nanofibre network to bind and deliver paracrine factors derived from hypoxic conditioned stem cell media to mimic this stem cell paracrine effect. Our self‐assembling peptide nanofibres presenting heparin were capable of binding paracrine factors from a medium phase. When these factor‐loaded materials were injected into the heart following coronary artery ligation in a mouse ischaemia‐reperfusion model of acute myocardial infarction, we found significant preservation of haemodynamic function. Through media manipulation, we were able to determine that crucial factors are primarily < 30 kDa and primarily heparin‐binding. Using recombinant VEGF‐ and bFGF‐loaded nanofibre networks, the effect observed with conditioned media was recapitulated. When evaluated in another disease model, a chronic rat ischaemic hind limb, our factor‐loaded materials contributed to extensive limb revascularization. These experiments demonstrate the potency of the paracrine effect associated with stem cell therapies and the potential of a biomaterial to bind and deliver these factors, pointing to a potential therapy based on synthetic materials and recombinant factors as an acellular therapy. Copyright


Development | 2008

Abnormal sympathetic nervous system development and physiological dysautonomia in Egr3-deficient mice

Laurie C. Eldredge; Xiaoguang M. Gao; David H. Quach; Lin Li; Xiaoqiang Han; Jon W. Lomasney; Warren G. Tourtellotte

Sympathetic nervous system development depends upon many factors that mediate neuron migration, differentiation and survival. Target tissue-derived nerve growth factor (NGF) signaling-induced gene expression is required for survival, differentiation and target tissue innervation of post-migratory sympathetic neurons. However, the transcriptional regulatory mechanisms mediated by NGF signaling are very poorly defined. Here, we identify Egr3, a member of the early growth response (Egr) family of transcriptional regulators, as having an important role in sympathetic nervous system development. Egr3 is regulated by NGF signaling and it is expressed in sympathetic neurons during development when they depend upon NGF for survival and target tissue innervation. Egr3-deficient mice have severe sympathetic target tissue innervation abnormalities and profound physiological dysautonomia. Unlike NGF, which is essential for sympathetic neuron survival and for axon branching within target tissues, Egr3 is required for normal terminal axon extension and branching, but not for neuron survival. The results indicate that Egr3 is a novel NGF signaling effector that regulates sympathetic neuron gene expression required for normal target tissue innervation and function. Egr3-deficient mice have a phenotype that is remarkably similar to humans with sympathetic nervous system disease, raising the possibility that it may have a role in some forms of human dysautonomia, most of which have no known cause.


Circulation Research | 2012

Mitotically inactivated embryonic stem cells can be used as an in vivo feeder layer to nurse damaged myocardium after acute myocardial infarction: a preclinical study.

Richard K. Burt; You Hong Chen; Larissa Verda; Carolina Lucena; Shankararao Navale; Jesse Johnson; Xiaoqiang Han; Jon W. Lomasney; Jessa M. Baker; Ka Leung Ngai; Aya Kino; James Carr; Jan Kajstura; Piero Anversa

Rationale: Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. Objective: To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. Methods and Results: After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2′-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. Conclusions: As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes.


Bone Marrow Transplantation | 2018

Five year follow-up after autologous peripheral blood hematopoietic stem cell transplantation for refractory, chronic, corticosteroid-dependent systemic lupus erythematosus: effect of conditioning regimen on outcome

Richard K. Burt; Xiaoqiang Han; Paula Gozdziak; Kim Yaung; Amy Morgan; Allison M. Clendenan; Jacquelyn Henry; Michelle A. Calvario; Syamal K. Datta; Irene B. Helenowski; James W. Schroeder

Some patients with systemic lupus erythematosus (SLE) are refractory to traditional therapies, dependent on chronic corticosteroids, have organ damage, and are at high risk of mortality. In this group of patients, we report outcome at a median of five years after autologous hematopoietic stem cell transplant (HSCT) using two different non-myeloablative regimens. Four patients received a conditioning regimen of cyclophosphamide (200 mg/kg) and alemtuzumab (60 mg), while 26 patients underwent conditioning with cyclophosphamide (200 mg/kg), rATG (Thymoglobulin) (5.5 mg/kg), and rituximab 1000 mg. Unselected peripheral blood stem cells were infused on day 0. There were no treatment related deaths. Of the four patients treated with cyclophosphamide and alemtuzumab, none entered remission. For the 26 patients treated with cyclophosphamide, rATG, and rituximab, disease remission defined as no immune suppressive drugs except hydroxychloroquine and/or 10 mg or less of prednisone a day was 92% at 6 months, 92% at one year, 81% at 2 years, 71% at 3 years, and 62% at 4 and 5 years post-HSCT. Autologous HSCT outcome is dependent on the conditioning regimen but prior organ damage may cause lingering symptoms.


Circulation Research | 2012

Mitotically Inactivated Embryonic Stem Cells Can Be Used as an In Vivo Feeder Layer to Nurse Damaged Myocardium after Acute Myocardial InfarctionNovelty and Significance

Richard K. Burt; You-hong Chen; Larissa Verda; Carolina Lucena; Shankararao Navale; Jesse Johnson; Xiaoqiang Han; Jon W. Lomasney; Jessa M. Baker; Ka-Leung Ngai; Aya Kino; James Carr; Jan Kajstura; Piero Anversa

Rationale: Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. Objective: To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. Methods and Results: After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2′-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. Conclusions: As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes.


Circulation Research | 2012

Mitotically Inactivated Embryonic Stem Cells Can Be Used as an In Vivo Feeder Layer to Nurse Damaged Myocardium after Acute Myocardial InfarctionNovelty and Significance: A Preclinical Study

Richard K. Burt; You-hong Chen; Larissa Verda; Carolina Lucena; Shankararao Navale; Jesse Johnson; Xiaoqiang Han; Jon W. Lomasney; Jessa M. Baker; Ka-Leung Ngai; Aya Kino; James Carr; Jan Kajstura; Piero Anversa

Rationale: Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. Objective: To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. Methods and Results: After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2′-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. Conclusions: As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes.

Collaboration


Dive into the Xiaoqiang Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aya Kino

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

James Carr

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Jan Kajstura

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Piero Anversa

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Morgan

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge