Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoqiang Sun is active.

Publication


Featured researches published by Xiaoqiang Sun.


IEEE Access | 2017

Saliency-Based Pedestrian Detection in Far Infrared Images

Yingfeng Cai; Ze Liu; Hai Wang; Xiaoqiang Sun

Night time pedestrian detection is more and more important in advanced driver assistant systems (ADAS). Traditional pedestrian detection algorithms in far infrared (FIR) images lack accuracy and have long processing times. Focusing on this issue, in this paper, a visual saliency-based pedestrian detection algorithm is proposed. First, areas that contain suspected pedestrians are detected using a fusion saliency-based method. Then, the sub-image of the suspected pedestrian is used as an input to a histogram of local intensity difference feature and cross kernel-based support vector machine classifier to make a final determination. Experiments performed using a real FIR road image data set demonstrated that the proposed fusion saliency-based region of interest (ROI) detection method has the largest pedestrian inclusion rate and the smallest ROI proportion compared with three other methods. Besides, compared with existing state-of-the-art pedestrian detection algorithms, the proposed method demonstrates a much higher pedestrian detection rate with a comparably short processing time.


Vehicle System Dynamics | 2016

Vehicle Height and Posture Control of the Electronic Air Suspension System Using the Hybrid System Approach

Xiaoqiang Sun; Yingfeng Cai; Long Chen; Yanling Liu; Shaohua Wang

ABSTRACT The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on–off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.


Chinese Journal of Mechanical Engineering | 2016

A hybrid approach to modeling and control of vehicle height for electronically controlled air suspension

Xiaoqiang Sun; Yingfeng Cai; Shaohua Wang; Yanling Liu; Long Chen

The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.


Neural Networks | 2018

Salient object detection based on multi-scale contrast

Hai Wang; Lei Dai; Yingfeng Cai; Xiaoqiang Sun; Long Chen

Due to the development of deep learning networks, a salient object detection based on deep learning networks, which are used to extract the features, has made a great breakthrough compared to the traditional methods. At present, the salient object detection mainly relies on very deep convolutional network, which is used to extract the features. In deep learning networks, an dramatic increase of network depth may cause more training errors instead. In this paper, we use the residual network to increase network depth and to mitigate the errors caused by depth increase simultaneously. Inspired by image simplification, we use color and texture features to obtain simplified image with multiple scales by means of region assimilation on the basis of super-pixels in order to reduce the complexity of images and to improve the accuracy of salient target detection. We refine the feature on pixel level by the multi-scale feature correction method to avoid the feature error when the image is simplified at the above-mentioned region level. The final full connection layer not only integrates features of multi-scale and multi-level but also works as classifier of salient targets. The experimental results show that proposed model achieves better results than other salient object detection models based on original deep learning networks.


Journal of Sensors | 2016

Night-Time Vehicle Detection Algorithm Based on Visual Saliency and Deep Learning

Yingfeng Cai; Xiaoqiang Sun; Hai Wang; Long Chen; Haobin Jiang

Night vision systems get more and more attention in the field of automotive active safety field. In this area, a number of researchers have proposed far-infrared sensor based night-time vehicle detection algorithm. However, existing algorithms have low performance in some indicators such as the detection rate and processing time. To solve this problem, we propose a far-infrared image vehicle detection algorithm based on visual saliency and deep learning. Firstly, most of the nonvehicle pixels will be removed with visual saliency computation. Then, vehicle candidate will be generated by using prior information such as camera parameters and vehicle size. Finally, classifier trained with deep belief networks will be applied to verify the candidates generated in last step. The proposed algorithm is tested in around 6000 images and achieves detection rate of 92.3% and processing time of 25 Hz which is better than existing methods.


Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2016

Design of a hybrid model predictive controller for the vehicle height adjustment system of an electronic air suspension

Xiaoqiang Sun; Yingfeng Cai; Shaohua Wang; Yanling Liu; Long Chen

The vehicle height adjustment system of an electronically controlled air suspension poses challenging hybrid control problems, since it can operate in several distinct discrete modes (the gas-charging mode, the gas-discharging mode and the no-action) by switching the on–off solenoid valves. This paper describes the development and experimental validation of a new vehicle height adjustment controller for an electronically controlled air suspension based on the theory of hybrid systems. The mixed logical dynamic modelling approach, which is an effective model structure for hybrid systems, is chosen to obtain the hybrid dynamic behaviours of the vehicle height adjustment system. On the basis of some reasonable assumptions and a linear approximation for the non-linearities of the components, the mixed logical dynamic model of the system is constructed by using the hybrid systems description language, which is a high-level hybrid modelling language. Using this model, a constrained optimal control problem is formulated and solved by tuning a hybrid model predictive controller, which can track the desired vehicle height through controlling the on–off statuses of the solenoid valves directly. Simulations and experimental results are presented finally to show how the hybrid framework and the optimization-based control strategy can be successfully applied to solve the vehicle height control problem of an electronically controlled air suspension in a systematic way.


Sensors | 2018

Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion

Te Chen; Long Chen; Xing Xu; Yingfeng Cai; Haobin Jiang; Xiaoqiang Sun

Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.


Mathematical Problems in Engineering | 2018

Research on Speed Optimization Strategy of Hybrid Electric Vehicle Queue Based on Particle Swarm Optimization

Shaohua Wang; Chengquan Yu; Dehua Shi; Xiaoqiang Sun

Traffic lights intersections are common in cities and have an impact on the energy consumption of vehicles, so it is significant to optimize the velocities of vehicles in urban road conditions. The novel speed optimization strategy for hybrid electric vehicle (HEV) queue that helps reduce fuel consumption and improve traffic efficiency is presented in this paper, where real-world traffic signal information is used to construct the research scenario. The initial values of the target velocities are obtained based on the signal phase and timing (SPAT). Then the particle swarm optimization (PSO) algorithm is used to solve the nonlinear constrained problem and obtain the optimal target velocities based on vehicle to vehicle communication (V2V) and vehicle to infrastructure communication (V2I). The lower controller, which applies rule based control strategy, is designed to split the power of the engine and two electric motors in a power split HEV, which is quite promising because of its advantages in fuel economy. Simulation results demonstrate the superior performance of the proposed strategy in reducing fuel consumption of the HEV queue and improving traffic smoothness.


Mathematical Problems in Engineering | 2018

Reliable Sideslip Angle Estimation of Four-Wheel Independent Drive Electric Vehicle by Information Iteration and Fusion

Te Chen; Long Chen; Xing Xu; Yingfeng Cai; Haobin Jiang; Xiaoqiang Sun

Accurate estimation of longitudinal force and sideslip angle is significant to stability control of four-wheel independent driven electric vehicle. The observer design problem for the longitudinal force and sideslip angle estimation is investigated in this work. The electric driving wheel model is introduced into the longitudinal force estimation, considering the longitudinal force is the unknown input of the system, the proportional integral observer is applied to restructure the differential equation of longitudinal force, and the extended Kalman filter is utilized to estimate the unbiased longitudinal force. Using the estimated longitudinal force, considering the unknown disturbances and uncertainties of vehicle model, the robust sideslip angle estimator is proposed based on vehicle dynamics model. Moreover, the recursive least squares algorithm with forgetting factor is applied to vehicle state estimation based on the vehicle kinematics model. In order to integrate the advantages of the dynamics-model-based observer and kinematics-model-based observer and improve adaptability of observer system in complex working conditions, a vehicle sideslip angle fusion estimation strategy is proposed. The simulations and experiments are implemented and the performance of proposed estimation method is validated.


Journal of Sensors | 2017

Vehicle Detection Based on Deep Dual-Vehicle Deformable Part Models

Yingfeng Cai; Ze Liu; Xiaoqiang Sun; Long Chen; Hai Wang; Yong Zhang

Vehicle detection plays an important role in safe driving assistance technology. Due to the high accuracy and good efficiency, the deformable part model is widely used in the field of vehicle detection. At present, the problem related to reduction of false positivity rate of partially obscured vehicles is very challenging in vehicle detection technology based on machine vision. In order to address the abovementioned issues, this paper proposes a deep vehicle detection algorithm based on the dual-vehicle deformable part model. The deep learning framework can be used for vehicle detection to solve the problem related to incomplete design and other issues. In this paper, the deep model is used for vehicle detection that consists of feature extraction, deformation processing, occlusion processing, and classifier training using the back propagation (BP) algorithm to enhance the potential synergistic interaction between various parts and to get more comprehensive vehicle characteristics. The experimental results have shown that proposed algorithm is superior to the existing detection algorithms in detection of partially shielded vehicles, and it ensures high detection efficiency while satisfying the real-time requirements of safe driving assistance technology.

Collaboration


Dive into the Xiaoqiang Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge