Xiaoqin Zhao
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoqin Zhao.
ACS Applied Materials & Interfaces | 2017
Shuangjian Li; Yulong An; Xiaoqin Zhao; Huidi Zhou; Jianmin Chen; Guoliang Hou
Inspired by the structure of cancellous bone and the nutrition metabolism of articular cartilage, we present a novel concept for a synthetic articular-cartilage-like material. The bioinspired material possesses a low coefficient of friction even under ultrahigh loads and has an extremely long lifetime. Furthermore, the composite shows zero-wear behavior and causes negligible wear damage to the friction pair. The superior tribological performance is attributed to the spontaneously generated articular-cartilage-like layer, which is constantly replenished by frictional heat and pressure. Our findings open a new area for industrial scale engineering applications to improve the friction and wear properties of moving components.
Surface Engineering | 2012
Guoliang Hou; Yulong An; Xiaoqin Zhao; Jianmin Chen; Huipeng Zhou; Guang Liu
Abstract Tungsten carbide (WC)–(W,Cr)2C–Ni coatings have been deposited by high velocity oxyfuel spraying. The influence of post-vacuum heat treatment on the microstructure, phase composition, microhardness and wear resistance of the coatings has been investigated, which is conducted based on analyses of the microstructure and phase composition evolution of the coatings by scanning electron microscopy and X-ray diffraction, as well as measurement of their microhardness with a microhardness tester and evaluation of their friction and wear behaviour with an oscillating friction and wear tester. Results show that after heat treatment above 600°C, crystallisation of amorphous phases occurs, and some new phases rich of Fe and C are generated in the coatings. Moreover, the microhardness and wear resistance of WC–(W,Cr)2C–Ni coatings increase with increasing heat treatment temperature up to 600 and 700°C, but they tend to decrease with further elevating heat treatment temperature.
Journal of Thermal Spray Technology | 2014
Xiaoqin Zhao; Yulong An; Guoliang Hou; Huidi Zhou; Jianmin Chen
Two types of ceramic composite coatings (denoted as N-AT13 coating and M-AT13 coating) were fabricated on 1Cr18Ni9Ti stainless steel substrate from ultra-fine and coarse Al2O3-13%TiO2 feedstocks by air plasma spraying. The friction and wear behavior of as-prepared coatings sliding against Al2O3 and stainless steel balls under the lubrication of liquid paraffin was evaluated with an SRV friction and wear tester (Optimol, Germany). The fractured and worn surfaces of the coatings were observed using a scanning electron microscope and a field-emission scanning electron microscope; and the wear mechanisms of the coatings were discussed based on scanning electron microscopic analysis and energy dispersive spectrometric analysis. Results show that N-AT13 coating possesses a unique microstructure and strong inter-splat bonding, thereby showing increased microhardness and bonding strength as well as much better friction-reduction and wear resistance than M-AT13 coating. Moreover, there exist differences in the wear mechanisms of N-AT13 and M-AT13 coatings which slide against ceramic and stainless steel balls under the lubrication of liquid paraffin. Namely, with the increase of normal load, the burnishing of N-AT13 coating coupled with Al2O3 ball is gradually transformed to grain-abrasion and deformation, while M-AT13 coating is dominated by grain-pullout and brittle fracture in the whole range of tested normal load.
Journal of Thermal Spray Technology | 2015
Jie Chen; Huidi Zhou; Xiaoqin Zhao; Jianmin Chen; Yulong An; Fengyuan Yan
Jie Chen, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Peoples Republic of China and University of Chinese Academy of Sciences, Beijing, Peoples Republic of China; and Huidi Zhou, Xiaoqin Zhao, Jianmin Chen, Yulong An, and Fengyuan Yan, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Peoples Republic of China. Contact e-mails: [email protected] and [email protected]. JTTEE5 24:281 Erratum DOI: 10.1007/s11666-014-0193-z 1059-9630/
Ultrasonics Sonochemistry | 2018
Wen Deng; Guoliang Hou; Shuangjian Li; Jiesheng Han; Xiaoqin Zhao; Xia Liu; Yulong An; Huidi Zhou; Jianmin Chen
19.00 ASM International
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology | 2013
Jie Yang; Yulong An; Xiaoqin Zhao; Jianmin Chen; N Liu; Guoliang Hou; Huipeng Zhou; Jiquan Chen
A simple, scalable and economical method was proposed to obtain ceramic-organic composite coating with excellent comprehensive properties include hardness, toughness, elastic recovery, lamellar interfacial bonding and anti-cavitation erosion: introducing epoxy resin into the pores and micro-cracks of plasma sprayed ceramic coating. The results indicate that the epoxy resin was successfully penetrated into the whole ceramic coating and filled almost all defects by vacuum impregnation, which greatly enhanced its compactness and mechanical properties. The bonding strength between top coating and metal interlayer significantly increased from 17.3 MPa to 53.0 MPa, and the hardness (H) of top coating greatly increased from 11.07 GPa to 23.57 GPa. Besides, the value of H3/E2 also increased from 0.06 GPa to 0.15 GPa, meaning the toughness of ceramic coating had been obviously improved. The pure ceramic coating had been punctured only after 4 h of cavitation test. However, the resin with high elasticity and toughness can effectively absorb impact energy, prevent cracks propagation and delay splats spallation during the cavitation erosion process. The novel composite coating displayed far better cavitation erosion resistance than pure ceramic coating, and it was still intact after 10 h of test.
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2006
Xiaoqin Zhao; Huidi Zhou; Jianmin Chen
Single α-phase and duplex (α+β′) phase aluminum bronze (CuAl) coatings were deposited on 1Cr18Ni9Ti stainless steels by atmosphere plasma spray. The fretting wear behaviors of the two types of coatings were investigated in relation to their phase composition. The damage mechanisms of the coatings were identified by analysing their worn surfaces using scanning electron microscopy and three-dimensional non-contact surface profiler. A discussion about the identified fretting damage mechanisms was carried out. Results show that duplex CuAl coating has higher hardness than the single α-phase CuAl coating but the former has poorer resistance against fretting wear than the latter in mixed stick-slip regime and gross slip regime. The toughness reduction due to the dendritic distribution of the β′ phase in duplex CuAl coating could explain the low fretting wear resistance observed in the duplex coating. In stick regime, single α-phase CuAl coating has a lower friction coefficient but it has a higher wear rate than the duplex coating, which is attributed to the lower hardness and hence more severe plastic deformation.
Surface & Coatings Technology | 2013
Jie Chen; Yulong An; Jie Yang; Xiaoqin Zhao; Fengyuan Yan; Huidi Zhou; Jianmin Chen
Wear | 2014
Guoliang Hou; Xiaoqin Zhao; Huidi Zhou; Jinjun Lu; Yulong An; Jianmin Chen; Jie Yang
Applied Surface Science | 2012
Jianmin Chen; Guoliang Hou; Jie Chen; Yulong An; Huidi Zhou; Xiaoqin Zhao; Jie Yang