Xiaoquan Song
Ocean University of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoquan Song.
Optics Letters | 2009
Zhishen Liu; Decang Bi; Xiaoquan Song; Jinbao Xia; Rongzhong Li; Zhangjun Wang; Chiao-Yao She
This paper presents a method for measuring atmosphere temperature profile using a single iodine filter as frequency discriminator. This high spectral resolution lidar (HSRL) is a system reconfigured with the transmitter of a mobile Doppler wind lidar and with a receiving subsystem redesigned to pass the backscattering optical signal through the iodine cell twice to filter out the aerosol scattering signal and to allow analysis of the molecular scattering spectrum, thus measuring temperatures. We report what are believed to be the first results of vertical temperature profiling from the ground to 16 km altitude by this lidar system (power-aperture product=0.35 Wm(2)). Concurrent observations of an L band radiosonde were carried out on June 14 and August 3, 2008, in good agreement with HSRL temperature profiles.
Optics Express | 2015
Songhua Wu; Xiaoquan Song; Bingyi Liu; Guangyao Dai; Jintao Liu; Kailin Zhang; Shengguang Qin; Dengxin Hua; Fei Gao; Liping Liu
Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change.
Chinese Optics Letters | 2009
Fei Gao; Xiaoquan Song; Yufeng Wan; Yi Zhou; Dengxin Hua
An ultraviolet (UV) Raman lidar system at 354.7 nm has been developed for accurately measuring the aerosol extinction profiles. A spectroscopic filter combining a high-spectral-resolution grating with two narrowband mirrors is used to separate the vibrational Raman scattering signal of N2 at a central wavelength of 386.7 nm and the elastic scattering signal at 354.7 nm. The aerosol extinction is derived from the Raman scattering of N2 and the elastic scattering by the use of Raman method and Klett method, respectively. The derived results of aerosol extinction are used to compare the difference of two retrieval methods, and the preliminary experiment shows that the Raman lidar system operated in analog detection mode has the capability of measuring aerosol profiles up to a height of 3 km with a laser energy of 250 mJ and an integration time of 8 min.
Journal of The Optical Society of Korea | 2013
Xiaoquan Song; Chao Chen; Bingyi Liu; Jinbao Xia; S. Stanič
The operation of a Doppler wind LIDAR in a mobile environment is very sensitive to shocks and vibrations, which can cause critical failures such as misalignment of the optical path and damage to optical components. To be able to stabilize the LIDAR and to perform wind field measurements in motion, a shock absorption and vibration isolation system was designed and implemented. The performance of the vehicle-mounted Doppler wind LIDAR was tested in motion, first in a circular test route with a diameter of about 30 m and later in regular expressway traffic. The vibration isolation efficiency of the system was found to be higher than 82% in the main vibration area and shock dynamic deflection was smaller than maximal deflection of the isolator. The stability of the laser locking frequency in the same mobile environment before and after the vibration isolation system installation was also found to be greatly improved. The reliability of the vibration isolation system was confirmed by good results of the analysis of the LIDAR data, in particular the plane position indicator of the line of sight velocity and the wind profile.
Remote Sensing | 2013
Songhua Wu; Xiaoquan Song; Bingyi Liu
A lidar detects atmospheric parameters by transmitting laser pulse to the atmosphere and receiving the backscattering signals from molecules and aerosol particles. Because of the small backscattering cross section, a lidar usually uses the high sensitive photomultiplier and avalanche photodiode as detector and uses photon counting technology for collection of weak backscatter signals. Photon Counting enables the capturing of extremely weak lidar return from long distance, throughout dark background, by a long time accumulation. Because of the strong solar background, the signal-to-noise ratio of lidar during daytime could be greatly restricted, especially for the lidar operating at visible wavelengths where solar background is prominent. Narrow band-pass filters must therefore be installed in order to isolate solar background noise at wavelengths close to that of the lidar receiving channel, whereas the background light in superposition with signal spectrum, limits an effective margin for signal-to-noise ratio (SNR) improvement. This work describes a lidar prototype operating at the Fraunhofer lines, the invisible band of solar spectrum, to achieve photon counting under intense solar background. The photon counting lidar prototype in Fraunhofer lines devised was used to observe the atmospheric boundary layer. The SNR was improved 2-3 times by operating the lidar at the wavelength in solar dark lines. The aerosol extinctions illustrate the vertical structures of aerosol in the atmospheric boundary over Qingdao suburban during summer 2011.
Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018) | 2018
Chao Chen; Zhangjun Wang; Xiufen Wang; Xiaoquan Song; Xingtao Liu; Xiangqian Meng; Xianxin Li; Hui Li; Quanfeng Zhuang; Wei Deng; Xin Pan
The observations of marine aerosol over the Yellow Sea near Qingdao were carried out using a ship-borne scanning micro pulse lidar (SMPL) onboard the oceanographic research vessel, XIANGYANGHONG No.8 (XYH-08). The observation campaign including anchor point observation and sailing observation was conducted from September 13th to September 18th, 2015. We acquired observation data of sailing route including aerosol extinction coefficient, the temporal and spatial variation of aerosols and clouds, and the structure of boundary layer and so on. Through the function of 3-dimensional scanning, the SMPL also provided range-height indication (RHI) and plane-position indication (PPI) of observation signals which could well reflect the distribution of marine aerosol in different directions. From the change of aerosol extinction coefficient, we successfully captured a process of sea fog occurrence.
Remote Sensing | 2018
Guangyao Dai; Songhua Wu; Xiaoquan Song
A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL) system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP) at angles of (0 ° , 45 ° ) and (22.5 ° , −22.5 ° ) are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization) during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III) in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l.)) in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l.) in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.). The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as the height increases.
Optics and Photonics for Energy and the Environment | 2017
Songhua Wu; Shengguang Qin; Jintao Liu; Bingyi Liu; Xiaoquan Song; Kailin Zhang; Changzhong Feng; Guangyao Dai
The Compact High-Power Shipborne Doppler Wind Lidar (CHiPSDWiL) based on high-spectral-resolution technique has been developed for the measurement of the wind field and the properties of the aerosol and clouds in the troposphere.
Lidar Remote Sensing for Environmental Monitoring XIV | 2014
Guangyao Dai; Songhua Wu; Xiaoquan Song; Shengguang Qin; Bingyi Liu; Jintao Liu; Kailin Zhang; Wei Zhang
Vertical profiles of the linear particle depolarization ratio p δ of cloud and aerosol in the Tibet Plateau were measured during the Tibetan Plateau atmospheric expedition experiment campaign with water vapor, cloud and aerosol lidar system, which is capable of depolarization ratio measurement. The atmospheric comprehensive observations were performed during July of 2013 at Litang (30.03°N,100.28°E), which is 3949 meters above the mean sea level, Sichuan province, China. It was the first time to detect and obtain the Tibetan Plateau cloud and aerosol lidar depolarization profiles to our knowledge. After completing the plateau experiment campaign, the lidar system measured the atmosphere above coastal area in Qingdao (36.165°N,120.4956°E). In this year, we continued to participate in the plateau experiment campaign in Nagchu (31.5°N,92.05°E), which is 4600 meters above the mean sea level, The Tibet Autonomous Region from 1st, July to 1st, September. Since particle size, shape and refractive index have an impact on linear particle depolarization ratio, one can classify the aerosol types and cloud phase in turn in the Tibetan Plateau and Qingdao area using linear particle depolarization ratio data. Generally, two calibration methods were applied: comparison of the lidar measurement data and CALIPSO simultaneous data method and half-wave plate ±45°switch method. In this paper we applied the comparison calibration method. The correlation coefficient between lidar measurement data and CALIPSO data reaches up to 84.92%, which shows great linear relation. Finally, after the calculation and calibration of the linear particle depolarization ratio measured during the plateau experiment campaign and observation in coastal area, the ice-water mixed cloud (0.15< p δ <0.5), water cloud ( p δ <0.15) and dusty mix(0.2< p δ <0.35) in Tibetan Plateau were occurred and classified. Meanwhile, the cirrus clouds ( p δ <0.5), water cloud, smoke and urban pollution (0.05< p δ <0.2) and dusty mix in Qingdao area were also occurred and classified.
Atmospheric Measurement Techniques | 2011
T.-Y. He; S. Stanič; Fei Gao; Klemen Bergant; D. Veberič; Xiaoquan Song; A. Dolžan