Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoquan Su is active.

Publication


Featured researches published by Xiaoquan Su.


PLOS Genetics | 2014

Nannochloropsis Genomes Reveal Evolution of Microalgal Oleaginous Traits

Dongmei Wang; Kang Ning; Jing Li; Jianqiang Hu; Danxiang Han; Hui Wang; Xiaowei Zeng; Xiaoyan Jing; Qian Zhou; Xiaoquan Su; Xingzhi Chang; Anhui Wang; Wei Wang; Jing Jia; Li Wei; Yi Xin; Yinghe Qiao; Ranran Huang; Jie Chen; Bo Han; Kangsup Yoon; Russell T. Hill; Yonathan Zohar; Feng Chen; Qiang Hu; Jian Xu

Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains) and one time-series transcriptome dataset for triacylglycerol (TAG) synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2) in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.


Plant Physiology | 2015

Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp.

Jianhua Fan; Kang Ning; Xiaowei Zeng; Yuanchan Luo; Dongmei Wang; Jianqiang Hu; Jing Li; Hui Xu; Jianke Huang; Minxi Wan; Weiliang Wang; Daojing Zhang; Guomin Shen; Conglin Run; Junjie Liao; Lei Fang; Shi Huang; Xiaoyan Jing; Xiaoquan Su; Anhui Wang; Lili Bai; Zanmin Hu; Jian Xu; Yuanguang Li

The versatile chlorophyta Chlorella pyrenoidosa provides genomic insights into the trophic diversity and metabolic dynamics. The ability to rapidly switch the intracellular energy storage form from starch to lipids is an advantageous trait for microalgae feedstock. To probe this mechanism, we sequenced the 56.8-Mbp genome of Chlorella pyrenoidosa FACHB-9, an industrial production strain for protein, starch, and lipids. The genome exhibits positive selection and gene family expansion in lipid and carbohydrate metabolism and genes related to cell cycle and stress response. Moreover, 10 lipid metabolism genes might be originated from bacteria via horizontal gene transfer. Transcriptomic dynamics tracked via messenger RNA sequencing over six time points during metabolic switch from starch-rich heterotrophy to lipid-rich photoautotrophy revealed that under heterotrophy, genes most strongly expressed were from the tricarboxylic acid cycle, respiratory chain, oxidative phosphorylation, gluconeogenesis, glyoxylate cycle, and amino acid metabolisms, whereas those most down-regulated were from fatty acid and oxidative pentose phosphate metabolism. The shift from heterotrophy into photoautotrophy highlights up-regulation of genes from carbon fixation, photosynthesis, fatty acid biosynthesis, the oxidative pentose phosphate pathway, and starch catabolism, which resulted in a marked redirection of metabolism, where the primary carbon source of glycine is no longer supplied to cell building blocks by the tricarboxylic acid cycle and gluconeogenesis, whereas carbon skeletons from photosynthesis and starch degradation may be directly channeled into fatty acid and protein biosynthesis. By establishing the first genetic transformation in industrial oleaginous C. pyrenoidosa, we further showed that overexpression of an NAD(H) kinase from Arabidopsis (Arabidopsis thaliana) increased cellular lipid content by 110.4%, yet without reducing growth rate. These findings provide a foundation for exploiting the metabolic switch in microalgae for improved photosynthetic production of food and fuels.


PLOS ONE | 2013

QC-Chain: Fast and Holistic Quality Control Method for Next-Generation Sequencing Data

Qian Zhou; Xiaoquan Su; Anhui Wang; Jian Xu; Kang Ning

Next-generation sequencing (NGS) technologies have been widely used in life sciences. However, several kinds of sequencing artifacts, including low-quality reads and contaminating reads, were found to be quite common in raw sequencing data, which compromise downstream analysis. Therefore, quality control (QC) is essential for raw NGS data. However, although a few NGS data quality control tools are publicly available, there are two limitations: First, the processing speed could not cope with the rapid increase of large data volume. Second, with respect to removing the contaminating reads, none of them could identify contaminating sources de novo, and they rely heavily on prior information of the contaminating species, which is usually not available in advance. Here we report QC-Chain, a fast, accurate and holistic NGS data quality-control method. The tool synergeticly comprised of user-friendly tools for (1) quality assessment and trimming of raw reads using Parallel-QC, a fast read processing tool; (2) identification, quantification and filtration of unknown contamination to get high-quality clean reads. It was optimized based on parallel computation, so the processing speed is significantly higher than other QC methods. Experiments on simulated and real NGS data have shown that reads with low sequencing quality could be identified and filtered. Possible contaminating sources could be identified and quantified de novo, accurately and quickly. Comparison between raw reads and processed reads also showed that subsequent analyses (genome assembly, gene prediction, gene annotation, etc.) results based on processed reads improved significantly in completeness and accuracy. As regard to processing speed, QC-Chain achieves 7–8 time speed-up based on parallel computation as compared to traditional methods. Therefore, QC-Chain is a fast and useful quality control tool for read quality process and de novo contamination filtration of NGS reads, which could significantly facilitate downstream analysis. QC-Chain is publicly available at: http://www.computationalbioenergy.org/qc-chain.html.


Scientific Reports | 2015

Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan

Xinwei Cheng; Xiaoquan Su; Xiaohua Chen; Huanxin Zhao; Cunpei Bo; Jian Xu; Hong Bai; Kang Ning

Although Traditional Chinese Medicine (TCM) preparations have long history with successful applications, the scientific and systematic quality assessment of TCM preparations mainly focuses on chemical constituents and is far from comprehensive. There are currently only few primitive studies on assessment of biological ingredients in TCM preparations. Here, we have proposed a method, M-TCM, for biological assessment of the quality of TCM preparations based on high-throughput sequencing and metagenomic analysis. We have tested this method on Liuwei Dihuang Wan (LDW), a TCM whose ingredients have been well-defined. Our results have shown that firstly, this method could determine the biological ingredients of LDW preparations. Secondly, the quality and stability of LDW varies significantly among different manufacturers. Thirdly, the overall quality of LDW samples is significantly affected by their biological contaminations. This novel strategy has the potential to achieve comprehensive ingredient profiling of TCM preparations.


BMC Genomics | 2013

Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae

Li Wei; Yi Xin; Dongmei Wang; Xiaoyan Jing; Qian Zhou; Xiaoquan Su; Jing Jia; Kang Ning; Feng Chen; Qiang Hu; Jian Xu

BackgroundMicroalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.ResultsUsing the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.ConclusionThis first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.


Scientific Reports | 2016

Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

Zhuang Guo; Jiachao Zhang; Zhanli Wang; Kay Ying Ang; Shi Huang; Qiangchuan Hou; Xiaoquan Su; Jianmin Qiao; Yi Zheng; Lifeng Wang; Eileen Koh; Ho Danliang; Jian Xu; Yuan Kun Lee; Heping Zhang

Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota.


PLOS ONE | 2014

Parallel-META 2.0: Enhanced Metagenomic Data Analysis with Functional Annotation, High Performance Computing and Advanced Visualization

Xiaoquan Su; Weihua Pan; Baoxing Song; Jian Xu; Kang Ning

The metagenomic method directly sequences and analyses genome information from microbial communities. The main computational tasks for metagenomic analyses include taxonomical and functional structure analysis for all genomes in a microbial community (also referred to as a metagenomic sample). With the advancement of Next Generation Sequencing (NGS) techniques, the number of metagenomic samples and the data size for each sample are increasing rapidly. Current metagenomic analysis is both data- and computation- intensive, especially when there are many species in a metagenomic sample, and each has a large number of sequences. As such, metagenomic analyses require extensive computational power. The increasing analytical requirements further augment the challenges for computation analysis. In this work, we have proposed Parallel-META 2.0, a metagenomic analysis software package, to cope with such needs for efficient and fast analyses of taxonomical and functional structures for microbial communities. Parallel-META 2.0 is an extended and improved version of Parallel-META 1.0, which enhances the taxonomical analysis using multiple databases, improves computation efficiency by optimized parallel computing, and supports interactive visualization of results in multiple views. Furthermore, it enables functional analysis for metagenomic samples including short-reads assembly, gene prediction and functional annotation. Therefore, it could provide accurate taxonomical and functional analyses of the metagenomic samples in high-throughput manner and on large scale.


Scientific Reports | 2015

Assessment of quality control approaches for metagenomic data analysis

Qian Zhou; Xiaoquan Su; Kang Ning

Currently there is an explosive increase of the next-generation sequencing (NGS) projects and related datasets, which have to be processed by Quality Control (QC) procedures before they could be utilized for omics analysis. QC procedure usually includes identification and filtration of sequencing artifacts such as low-quality reads and contaminating reads, which would significantly affect and sometimes mislead downstream analysis. Quality control of NGS data for microbial communities is especially challenging. In this work, we have evaluated and compared the performance and effects of various QC pipelines on different types of metagenomic NGS data and from different angles, based on which general principles of using QC pipelines were proposed. Results based on both simulated and real metagenomic datasets have shown that: firstly, QC-Chain is superior in its ability for contamination identification for metagenomic NGS datasets with different complexities with high sensitivity and specificity. Secondly, the high performance computing engine enabled QC-Chain to achieve a significant reduction in processing time compared to other pipelines based on serial computing. Thirdly, QC-Chain could outperform other tools in benefiting downstream metagenomic data analysis.


Bioinformatics | 2012

SNP calling using genotype model selection on high-throughput sequencing data

Na You; Gabriel H. Murillo; Xiaoquan Su; Xiaowei Zeng; Jian Xu; Kang Ning; Shoudong Zhang; Jian-Kang Zhu; Xinping Cui

MOTIVATION A review of the available single nucleotide polymorphism (SNP) calling procedures for Illumina high-throughput sequencing (HTS) platform data reveals that most rely mainly on base-calling and mapping qualities as sources of error when calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for. RESULTS A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts for the errors that occur during the preparation of the genomic sample. Simulations and real data analyses indicate that GeMS has the best performance balance of sensitivity and positive predictive value among the tested SNP callers. AVAILABILITY The GeMS package can be downloaded from https://sites.google.com/a/bioinformatics.ucr.edu/xinping-cui/home/software or http://computationalbioenergy.org/software.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


PLOS ONE | 2012

MetaSee: An Interactive and Extendable Visualization Toolbox for Metagenomic Sample Analysis and Comparison

Baoxing Song; Xiaoquan Su; Jian Xu; Kang Ning

The NGS (next generation sequencing)-based metagenomic data analysis is becoming the mainstream for the study of microbial communities. Faced with a large amount of data in metagenomic research, effective data visualization is important for scientists to effectively explore, interpret and manipulate such rich information. The visualization of the metagenomic data, especially multi-sample data, is one of the most critical challenges. The different data sample sources, sequencing approaches and heterogeneous data formats make robust and seamless data visualization difficult. Moreover, researchers have different focuses on metagenomic studies: taxonomical or functional, sample-centric or genome-centric, single sample or multiple samples, etc. However, current efforts in metagenomic data visualization cannot fulfill all of these needs, and it is extremely hard to organize all of these visualization effects in a systematic manner. An extendable, interactive visualization tool would be the method of choice to fulfill all of these visualization needs. In this paper, we have present MetaSee, an extendable toolbox that facilitates the interactive visualization of metagenomic samples of interests. The main components of MetaSee include: (I) a core visualization engine that is composed of different views for comparison of multiple samples: Global view, Phylogenetic view, Sample view and Taxa view, as well as link-out for more in-depth analysis; (II) front-end user interface with real metagenomic models that connect to the above core visualization engine and (III) open-source portal for the development of plug-ins for MetaSee. This integrative visualization tool not only provides the visualization effects, but also enables researchers to perform in-depth analysis of the metagenomic samples of interests. Moreover, its open-source portal allows for the design of plug-ins for MetaSee, which would facilitate the development of any additional visualization effects.

Collaboration


Dive into the Xiaoquan Su's collaboration.

Top Co-Authors

Avatar

Kang Ning

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jian Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shi Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qian Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gongchao Jing

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Baoxing Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinping Cui

University of California

View shared research outputs
Top Co-Authors

Avatar

Jianqiang Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaowei Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anhui Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge