Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaowei Lu is active.

Publication


Featured researches published by Xiaowei Lu.


Development | 2009

PTK7 is essential for polarized cell motility and convergent extension during mouse gastrulation

Wei Wei Yen; Margot Williams; Ammasi Periasamy; Mark Conaway; Carol A. Burdsal; Ray Keller; Xiaowei Lu; Ann E. Sutherland

Despite being implicated as a mechanism driving gastrulation and body axis elongation in mouse embryos, the cellular mechanisms underlying mammalian convergent extension (CE) are unknown. Here we show, with high-resolution time-lapse imaging of living mouse embryos, that mesodermal CE occurs by mediolateral cell intercalation, driven by mediolaterally polarized cell behavior. The initial events in the onset of CE are mediolateral elongation, alignment and orientation of mesoderm cells as they exit the primitive streak. This cell shape change occurs prior to, and is required for, the subsequent onset of mediolaterally polarized protrusive activity. In embryos mutant for PTK7, a novel cell polarity protein, the normal cell elongation and alignment upon leaving the primitive streak, the subsequent polarized protrusive activity, and CE and axial elongation all failed. The mesoderm normally thickens and extends, but on failure of convergence movements in Ptk7 mutants, the mesoderm underwent radial intercalation and excessive thinning, which suggests that a cryptic radial cell intercalation behavior resists excessive convergence-driven mesodermal thickening in normal embryos. When unimpeded by convergence forces in Ptk7 mutants, this unopposed radial intercalation resulted in excessive thinning of the mesoderm. These results show for the first time the polarized cell behaviors underlying CE in the mouse, demonstrate unique aspects of these behaviors compared with those of other vertebrates, and clearly define specific roles for planar polarity and for the novel planar cell polarity gene, Ptk7, as essential regulators of mediolateral cell intercalation during mammalian CE.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex

Melissa M. Harrison; Craig J. Ceol; Xiaowei Lu; H. Robert Horvitz

The Caenorhabditis elegans synthetic multivulva (synMuv) genes act redundantly to antagonize the specification of vulval cell fates, which are promoted by an RTK/Ras pathway. At least 26 synMuv genes have been genetically identified, several of which encode proteins with homologs that act in chromatin remodeling or transcriptional repression. Here we report the molecular characterization of two synMuv genes, lin-37 and lin-54. We show that lin-37 and lin-54 encode proteins in a complex with at least seven synMuv proteins, including LIN-35, the only C. elegans homolog of the mammalian tumor suppressor Rb. Biochemical analyses of mutants suggest that LIN-9, LIN-53, and LIN-54 are required for the stable formation of this complex. This complex is distinct from a second complex of synMuv proteins with a composition similar to that of the mammalian Nucleosome Remodeling and Deacetylase complex. The class B synMuv complex we identified is evolutionarily conserved and likely functions in transcriptional repression and developmental regulation.


Developmental Cell | 2014

Distinct apical and basolateral mechanisms drive planar cell polarity-dependent convergent extension of the mouse neural plate.

Margot Williams; Weiwei Yen; Xiaowei Lu; Ann E. Sutherland

The mechanisms of tissue convergence and extension (CE) driving axial elongation in mammalian embryos, and in particular, the cellular behaviors underlying CE in the epithelial neural tissue, have not been identified. Here we show that mouse neural cells undergo mediolaterally biased cell intercalation and exhibit both apical boundary rearrangement and polarized basolateral protrusive activity. Planar polarization and coordination of these two cell behaviors are essential for neural CE, as shown by failure of mediolateral intercalation in embryos mutant for two proteins associated with planar cell polarity signaling: Vangl2 and Ptk7. Embryos with mutations in Ptk7 fail to polarize cell behaviors within the plane of the tissue, whereas Vangl2 mutant embryos maintain tissue polarity and basal protrusive activity but are deficient in apical neighbor exchange. Neuroepithelial cells in both mutants fail to apically constrict, leading to craniorachischisis. These results reveal a cooperative mechanism for cell rearrangement during epithelial morphogenesis.


BMC Developmental Biology | 2010

The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear

Anju Paudyal; Christine Damrau; Victoria L. Patterson; Alexander Ermakov; Caroline J. Formstone; Zuzanna Lalanne; Sara Wells; Xiaowei Lu; Dominic P. Norris; Charlotte H. Dean; Deborah J. Henderson; Jennifer N. Murdoch

BackgroundThe planar cell polarity (PCP) signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins.ResultsWe report the identification of a new N-ethyl-N-nitrosourea (ENU)-induced mutant with craniorachischisis, which we have named chuzhoi (chz). We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2Lpand Celsr1Crshmutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants.ConclusionsThe chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation differentially affects the expression levels of the two Ptk7 protein isoforms and, while some Ptk7 protein can still be detected at the membrane, chuzhoi mutants demonstrate a significant reduction in membrane localization of Ptk7 protein. This mutant provides a useful tool to allow future studies aimed at understanding the molecular function of Ptk7.


The Journal of Neuroscience | 2009

The Small GTPase Rac1 Regulates Auditory Hair Cell Morphogenesis

Cynthia Grimsley-Myers; Conor W. Sipe; Gwenaëllle S.G. Géléoc; Xiaowei Lu

Morphogenesis of sensory hair cells, in particular their mechanotransduction organelle, the stereociliary bundle, requires highly organized remodeling of the actin cytoskeleton. The roles of Rho family small GTPases during this process remain unknown. Here we show that deletion of Rac1 in the otic epithelium resulted in severe defects in cochlear epithelial morphogenesis. The mutant cochlea was severely shortened with a reduced number of auditory hair cells and cellular organization of the auditory sensory epithelium was abnormal. Rac1 mutant hair cells also displayed defects in planar cell polarity and morphogenesis of the stereociliary bundle, including bundle fragmentation or deformation, and mispositioning or absence of the kinocilium. We further demonstrate that a Rac–PAK (p21-activated kinase) signaling pathway mediates kinocilium–stereocilia interactions and is required for cohesion of the stereociliary bundle. Together, these results reveal a critical function of Rac1 in morphogenesis of the auditory sensory epithelium and stereociliary bundle.


Development | 2011

Kif3a regulates planar polarization of auditory hair cells through both ciliary and non-ciliary mechanisms

Conor W. Sipe; Xiaowei Lu

Auditory hair cells represent one of the most prominent examples of epithelial planar polarity. In the auditory sensory epithelium, planar polarity of individual hair cells is defined by their V-shaped hair bundle, the mechanotransduction organelle located on the apical surface. At the tissue level, all hair cells display uniform planar polarity across the epithelium. Although it is known that tissue planar polarity is controlled by non-canonical Wnt/planar cell polarity (PCP) signaling, the hair cell-intrinsic polarity machinery that establishes the V-shape of the hair bundle is poorly understood. Here, we show that the microtubule motor subunit Kif3a regulates hair cell polarization through both ciliary and non-ciliary mechanisms. Disruption of Kif3a in the inner ear led to absence of the kinocilium, a shortened cochlear duct and flattened hair bundle morphology. Moreover, basal bodies are mispositioned along both the apicobasal and planar polarity axes of mutant hair cells, and hair bundle orientation was uncoupled from the basal body position. We show that a non-ciliary function of Kif3a regulates localized cortical activity of p21-activated kinases (PAK), which in turn controls basal body positioning in hair cells. Our results demonstrate that Kif3a-PAK signaling coordinates planar polarization of the hair bundle and the basal body in hair cells, and establish Kif3a as a key component of the hair cell-intrinsic polarity machinery, which acts in concert with the tissue polarity pathway.


Development | 2006

C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates

Erik C. Andersen; Xiaowei Lu; H. Robert Horvitz

The class A, B and C synthetic multivulva (synMuv) genes act redundantly to negatively regulate the expression of vulval cell fates in Caenorhabditis elegans. The class B and C synMuv proteins include homologs of proteins that modulate chromatin and influence transcription in other organisms similar to members of the Myb-MuvB/dREAM, NuRD and Tip60/NuA4 complexes. To determine how these chromatin-remodeling activities negatively regulate the vulval cell-fate decision, we isolated a suppressor of the synMuv phenotype and found that the suppressor gene encodes the C. elegans homolog of Drosophila melanogaster ISWI. The C. elegans ISW-1 protein likely acts as part of a Nucleosome Remodeling Factor (NURF) complex with NURF-1, a nematode ortholog of NURF301, to promote the synMuv phenotype. isw-1 and nurf-1 mutations suppress both the synMuv phenotype and the multivulva phenotype caused by overactivation of the Ras pathway. Our data suggest that a NURF-like complex promotes the expression of vulval cell fates by antagonizing the transcriptional and chromatin-remodeling activities of complexes similar to Myb-MuvB/dREAM, NuRD and Tip60/NuA4. Because the phenotypes caused by a null mutation in the tumor-suppressor and class B synMuv gene lin-35 Rb and a gain-of-function mutation in let-60 Ras are suppressed by reduction of isw-1 function, NURF complex proteins might be effective targets for cancer therapy.


Nature Neuroscience | 2006

UNC5A promotes neuronal apoptosis during spinal cord development independent of netrin-1

Megan E. Williams; Xiaowei Lu; William L. McKenna; Raesha Washington; Adam Boyette; Phyllis Strickland; Allison K. Dillon; Zaven Kaprielian; Marc Tessier-Lavigne; Lindsay Hinck

In addition to their role as chemorepellent netrin-1 receptors, UNC5 proteins may mediate cell death because they induce apoptosis in cultured cells. To test this in vivo, we generated Unc5a (formerly Unc5h1) knockout mice and found that this deletion decreased apoptosis and increased the number of neurons in the spinal cord. In contrast, loss of netrin-1 (Ntn1) did not affect the amount of apoptosis, suggesting that NTN1 is not required for neuronal apoptosis in vivo.


Current Biology | 2012

PTK7 Regulates Myosin II Activity to Orient Planar Polarity in the Mammalian Auditory Epithelium

Jianyi Lee; Anna Andreeva; Conor W. Sipe; Lixia Liu; Amy Cheng; Xiaowei Lu

BACKGROUND Planar cell polarity (PCP) signaling is a key regulator of epithelial morphogenesis, including neural tube closure and the orientation of inner ear sensory hair cells, and is mediated by a conserved noncanonical Wnt pathway. Ptk7 is a novel vertebrate-specific regulator of PCP, yet the mechanisms by which Ptk7 regulates mammalian epithelial PCP remain poorly understood. RESULTS Here we show that, in the mammalian auditory epithelium, Ptk7 is not required for membrane recruitment of Dishevelled 2; Ptk7 and Frizzled3/Frizzled6 receptors act in parallel and have opposing effects on hair cell PCP. Mosaic analysis identified a requirement of Ptk7 in neighboring supporting cells for hair cell PCP. Ptk7 and the noncanonical Wnt pathway differentially regulate a contractile myosin II network near the apical surface of supporting cells. We provide evidence that this apical myosin II network exerts polarized contractile tension on hair cells to align their PCP, as revealed by asymmetric junctional recruitment of vinculin, a tension-sensitive actin binding protein. In Ptk7 mutants, compromised myosin II activity resulted in loss of planar asymmetry and reduced junctional localization of vinculin. By contrast, vinculin planar asymmetry and stereociliary bundle orientation were restored in Fz3(-/-);Ptk7(-/-) double mutants. CONCLUSIONS These findings suggest that PTK7 acts in conjunction with the noncanonical Wnt pathway to orient epithelial PCP through modulation of myosin II-based contractile tension between supporting cells and hair cells.


Molecular and Cellular Neuroscience | 2007

UNC5C is required for spinal accessory motor neuron development.

A.K. Dillon; Angela R. Jevince; Lindsay Hinck; Susan L. Ackerman; Xiaowei Lu; Marc Tessier-Lavigne; Zaven Kaprielian

In both invertebrates and vertebrates, UNC5 receptors facilitate chemorepulsion away from a Netrin source. Unlike most motor neurons in the embryonic vertebrate spinal cord, spinal accessory motor neuron (SACMN) cell bodies and their axons translocate along a dorsally directed trajectory away from the floor plate/ventral midline and toward the lateral exit point (LEP). We have recently shown that Netrin-1 and DCC are required for the migration of SACMN cell bodies, in vivo. These observations raised the possibility that vertebrate UNC5 proteins mediate the presumed repulsion of SACMN away from the Netrin-rich ventral midline. Here, we show that SACMN are likely to express UNC5A and UNC5C. Whereas SACMN development proceeds normally in UNC5A null mice, many SACMN cell bodies fail to migrate away from the ventral midline and inappropriately cluster in the ventrolateral spinal cord of mouse embryos lacking UNC5C. These results support an important role for UNC5C in SACMN development.

Collaboration


Dive into the Xiaowei Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Tessier-Lavigne

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Jianyi Lee

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Grimsley-Myers

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar

H. Robert Horvitz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lixia Liu

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Anna Andreeva

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge