Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaowei Wei is active.

Publication


Featured researches published by Xiaowei Wei.


International Journal of Developmental Neuroscience | 2012

Disturbed apoptosis and cell proliferation in developing neuroepithelium of lumbo-sacral neural tubes in retinoic acid-induced spina bifida aperta in rat.

Xiaowei Wei; Hui Li; Jianing Miao; Fenghua Zhou; Bo Liu; Di Wu; Shujing Li; Li-li Wang; Yang Fan; Weilin Wang; Zhengwei Yuan

Spina bifida is a complex congenital malformation resulting from failure of fusion in the spinal neural tube during embryogenesis. However, the cellular mechanism underlying spina bifida is not fully understood. Here, we investigated cell apoptosis in whole embryos and proliferation of neural progenitor cells in the spinal neural tube during neurulation in all‐trans retinoic acid (atRA)‐induced spina bifida in fetal rats. Cell apoptosis was assessed by TUNEL assay on whole‐mount and serially sectioned samples of rat embryos with spina bifida. Cell proliferation of lumbo‐sacral neural progenitor cells was assessed by staining for the mitotic marker Ki67 and pH3. We found an excess of apoptosis in the neuroepithelium of embryos with spina bifida, which became more marked as embryos progress from E11 to E13. Conversely, there was a reduction in cell proliferation in spina bifida embryos, with a progressively greater difference from controls with stage from E11 to 13. Thus, atRA‐induced spina bifida in rat shows perturbed apoptosis and proliferation of neural progenitors in the lumbo‐sacral spinal cord during embryonic development, which might contribute to the pathogenesis of spina bifida.


Neurochemical Research | 2013

miR-9*- and miR-124a-Mediated switching of chromatin remodelling complexes is altered in rat spina bifida aperta.

Xiaowei Wei; Hui Li; Jianing Miao; Bo Liu; Yue Zhan; Di Wu; Yi Zhang; Lili Wang; Yang Fan; Hui Gu; Weilin Wang; Zhengwei Yuan

Neural tube defects (NTDs) are complex congenital malformations resulting from incomplete neurulation. Our previous work has demonstrated that motor and sensory neurons develop defectively in rat embryos with spina bifida aperta. To identify whether neural development-associated miRNAs play a role in the neurological deficits of NTDs, we screened a panel of neural development-related miRNAs, including miR-9, miR-9*, miR-124a, miR-10a, miR10b, miR-34a, miR-221 and miR-222, in the spinal cords of rats with retinoic acid–induced spina bifida aperta. We discovered that the expression of miR-9, miR-9* and miR-124a was specifically down-regulated compared to spinal cords without spina bifida. To further clarify whether down-regulation of miR-9* and miR-124a contributes to the neurological deficits of NTDs, we investigated the levels of genes involved in switching in the subunit composition of Swi/Snf-like BAF (Brg/Brm associated factor) complexes modulated by miR-9* and miR-124a and neuronal differentiation. In addition to the down-regulation of miR-9* and miR-124a expression, we also observed increased expression of repressor element silencing transcription factor (REST) and BAF53a and decreased expression of BAF53b, Brg1 and NeuroD1. Our results suggest that REST-regulated miR-9*- and the miR-124a-mediated chromatin remodelling regulatory mechanism may participate in the neuronal deficits of spina bifida.


Scientific Reports | 2015

Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics.

Dong An; Xiaowei Wei; Hui Li; Hui Gu; Tianchu Huang; Guifeng Zhao; Bo Liu; Weilin Wang; Lizhu Chen; Wei Ma; Henan Zhang; Songying Cao; Zhengwei Yuan

To identify candidate serum molecule biomarkers for the non-invasive early prenatal diagnosis of neural tube defects (NTDs), we employed an iTRAQ-based quantitative proteomic approach to analyze the proteomic changes in serum samples from embryonic day (E) 11 and E13 pregnant rats with spina bifida aperta (SBA) induced by all-trans retinoic acid. Among the 390 proteins identified, 40 proteins at E11 and 26 proteins at E13 displayed significant differential expression in the SBA groups. We confirmed 5 candidate proteins by ELISA. We observed the space-time expression changes of proprotein convertase subtilisin/kexin type 9 (PCSK9) at different stages of fetal development, including a marked decrease in the sera of NTD pregnancies and gradual increase in the sera of normal pregnancies with embryonic development. PCSK9 demonstrated the diagnostic efficacy of potential NTD biomarkers [with an area under the receiver operating characteristic curve of 0.763, 95% CI: 065–0.88]. Additionally, PCSK9 expression in the spinal cords and placentas of SBA rat fetuses was markedly decreased. PCSK9 could serve as a novel molecular biomarker for the non-invasive prenatal screening of NTDs and may be involved in the pathogenesis of NTDs at critical periods of fetal development.


Journal of Materials Science: Materials in Medicine | 2016

Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta

Xiaoshuai Li; Zhengwei Yuan; Xiaowei Wei; Hui Li; Guifeng Zhao; Jiaoning Miao; Di Wu; Bo Liu; Songying Cao; Dong An; Wei Ma; Henan Zhang; Weilin Wang; Qiushi Wang; Hui Gu

Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan–gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan–gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region.


Scientific Reports | 2016

Comprehensive maternal serum proteomics identifies the cytoskeletal proteins as non-invasive biomarkers in prenatal diagnosis of congenital heart defects.

Lizhu Chen; Hui Gu; Jun Li; Ze-Yu Yang; Xiao Sun; Li Zhang; Liping Shan; Lina Wu; Xiaowei Wei; Yili Zhao; Wei Ma; Henan Zhang; Songying Cao; Tianchu Huang; Jianing Miao; Zhengwei Yuan

Congenital heart defects (CHDs) are the most common group of major birth defects. Presently there are no clinically used biomarkers for prenatally detecting CHDs. Here, we performed a comprehensive maternal serum proteomics assessment, combined with immunoassays, for the discovery of non-invasive biomarkers for prenatal diagnosis of CHDs. A total of 370 women were included in this study. An isobaric tagging for relative and absolute quantification (iTRAQ) proteomic approach was used first to compare protein profiles in pooled serum collected from women who had CHD-possessing or normal fetuses, and 47 proteins displayed significant differential expressions. Targeted verifications were performed on 11 proteins using multiple reaction monitoring mass spectrometry (MRM-MS), and the resultant candidate biomarkers were then further validated using ELISA analysis. Finally, we identified a biomarker panel composed of 4 cytoskeletal proteins capable of differentiating CHD-pregnancies from normal ones [with an area under the receiver operating characteristic curve (AUC) of 0.938, P < 0.0001]. The discovery of cytoskeletal protein changes in maternal serum not only could help us in prenatal diagnosis of CHDs, but also may shed new light on CHD embryogenesis studies.


Cytotherapy | 2014

Different expression patterns of growth factors in rat fetuses with spina bifida aperta after in utero mesenchymal stromal cell transplantation

Hui Li; Jianing Miao; Guifeng Zhao; Di Wu; Bo Liu; Xiaowei Wei; Songying Cao; Hui Gu; Yi Zhang; Lili Wang; Yang Fan; Zhengwei Yuan

BACKGROUND AIMS In a previous study, we successfully devised a prenatal surgical approach and transplanted mesenchymal stromal cells (MSCs) to fetal rat spinal column to treat retinoic acid-induced neural tube defects in rat. Our results show that MSCs survived, migrated and differentiated into neural lineage cells. We intended to study various growth factor expressions in rat fetal spinal cords with spina bifida aperta after in utero MSC transplantation and the effect of in vivo growth factor introduction for prenatal spina bifida treatment. METHODS Pregnant rats were treated with retinoic acid on embryonic day 10 and then received fetal surgery for MSC transplantation and/or lentiviral epidermal growth factor (EGF) injection on embryonic day 16; various growth factor expression in spinal cords from embryonic day 20 fetuses were analyzed by means of quantitative reverse transcriptase-polymerase chain reaction. Terminal deoxynucleotidyl transferase dUTP nick end labeling analysis was performed to observe spinal tissue apoptosis. RESULTS Growth factor expression was dysregulated in spinal cords with spina bifida. After MSC transplantation, we observed significantly increased expression of EGF, fibroblast growth factor (FGF)-8, FGF-2 and FGF-20 in the MSC transplantation group compared with blank injection; Furthermore, EGF expression positively correlated with surviving MSC amounts. Expression of other growth factors was not significantly different. In vivo EGF introduction reduced spinal tissue apoptosis. CONCLUSIONS Our results suggest that intrinsic EGF and FGF-2, FGF-8 and FGF-20 might affect the in vivo fate of transplanted MSCs in a fetal rat spina bifida model. In vivo EGF introduction together with MSC transplantation might serve as a new strategy for prenatal spina bifida treatment.


PLOS ONE | 2013

Altered Expression of 14-3-3ζ Protein in Spinal Cords of Rat Fetuses with Spina Bifida Aperta

Lina Wu; Xiaowei Wei; Yang Fan; Jianing Miao; Li-li Wang; Yi Zhang; Di Wu; Zhengwei Yuan

Background A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs). A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E) 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed. Methodology/Principal Findings We used immunoblotting and quantitative real-time PCR (qRT-PCR) to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7), microRNA-375 (miR-375) and microRNA-451 (miR-451), which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses. Conclusions/Significance These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.


Cell Transplantation | 2016

Comparative Study on the Differentiation of Mesenchymal Stem Cells Between Fetal and Postnatal Rat Spinal Cord Niche.

Songying Cao; Xiaowei Wei; Hui Li; Jianing Miao; Guifeng Zhao; Di Wu; Bo Liu; Yi Zhang; Hui Gu; Lili Wang; Yang Fan; Dong An; Zhengwei Yuan

In a previous study, we established a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) into the fetal rat spinal column to treat neural tube defects (NTDs). We found that the transplanted MSCs survived and differentiated into neural lineage cells. Various cytokines and extracellular signaling systems in the spinal cord niche play an important role in cell differentiation. In this study, we observed the differentiation of transplanted MSCs in different spinal cord niches and further observed the expression of neurotrophic factors and growth factors in the spinal cord at different developmental stages to explore the mechanism of MSC differentiation in different spinal cord niches. The results showed that transplanted MSCs expressed markers of neural precursor cells (nestin), neurogliocytes (GFAP), and neurons (β-tubulin). The percentages of GFP+/nestin+ double-positive cells in transplanted MSCs in E16, P1, and P21 rats were 18.31%, 12.18%, and 5.06%, respectively. The percentages of GFP+/GFAP+ double-positive cells in E16, P1, and P21 rats were 32.01%, 15.35%, and 12.56%, respectively. The percentages of GFP+/β-tubulin+ double-positive cells in E16, P1, and P21 were 11.76%, 7.62%, and 4.88%, respectively. The differentiation rates of MSCs in embryonic spinal cords were significantly higher than in postnatal spinal cords (p < 0.05). We found that the transplanted MSCs expressed synapsin-1 at different developmental stages. After MSC transplantation, we observed that neurotrophic factor-3 (NT-3), fibroblast growth factor-2 (FGF-2), FGF-8, transforming growth factor-α (TGF-α), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) significantly increased in the MSC transplantation group compared with the blank injection group. Furthermore, FGF-2 and VEGF expression were positively correlated with the number of surviving MSCs. In addition, we found that the expression of brain-derived neurotrophic factor (BDNF), NT-3, FGF-8, TGF-β, epidermal growth factor (EGF), and insulin-like growth factor (IGF) decreased with age, and the expression of FGF-2, FGF-10, FGF-20, TGF-α, and PDGF increased with age. Our data suggest that the embryonic spinal cord niche is more conducive to MSC differentiation after transplantation.


Birth Defects Research Part A-clinical and Molecular Teratology | 2015

Sensory neuron differentiation potential of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta

Wei Ma; Xiaowei Wei; Hui Gu; Hui Li; Kaoping Guan; Dan Liu; Lizhu Chen; Songying Cao; Dong An; Henan Zhang; Tianchu Huang; Jianing Miao; Guifeng Zhao; Di Wu; Bo Liu; Weilin Wang; Zhengwei Yuan

BACKGROUND In previous studies, we found that the deficiency of sensory and motor neurons was a primary defect associated with the spinal malformation. Upon prenatal treatment of spina bifida through in utero stem cell transplantation in a retinoic acid-induced spina bifida rat model, we found that the mesenchymal stem cell (MSCs) survived, migrated, and differentiated into cells of a neural lineage. In the present study, we investigated whether the transplanted MSCs had the potential to differentiate into sensory neurons or to protect sensory neurons in the defective spinal cord. METHODS Pregnant rats treated with retinoic acid on embryonic day (E) 10, underwent fetal surgery for MSC transplantation on E16. The fetuses were harvested on E20. Immunofluorescence was used to detect the expression of Brn3a protein in the transplanted MSCs and dorsal root ganglion (DRG) neurons in the defective spinal cords. The expression of the transcription factors Brn3a and Runx1 in spinal cords was analyzed using real-time polymerase chain reaction. RESULTS Some of the transplanted MSCs expressed sensory neuron cell specific phenotypes. The expression of Brn3a and Runx1 was upregulated in the defective spinal cords when compared to controls. The percentage of Brn3a-positive neurons in DRG was also increased after transplantation. CONCLUSION Our results indicate that the transplantation of MSCs into the spinal cord could promote the transplanted MSCs and the surrounding cells to differentiate toward a sensory neuron cell fate and to play an important role in protecting sensory neurons in DRG. This approach might be of value in the treatment of sensory neuron deficiency in spina bifida aperta.


Neurotoxicology | 2018

Inhibition of NRF2 signaling and increased reactive oxygen species during embryogenesis in a rat model of retinoic acid-induced neural tube defects

Dan Liu; Jia Xue; Yusi Liu; Hui Gu; Xiaowei Wei; Wei Ma; Wenting Luo; Ling Ma; Shanshan Jia; Naixuan Dong; Jieting Huang; Yanfu Wang; Zhengwei Yuan

&NA; Exposure to retinoic acid (RA) during pregnancy increases the risk of serious neural tube defects (NTDs) in the developing fetus. The precise molecular mechanism for this process is unclear; however, RA is associated with oxidative stress mediated by reactive oxygen species. Nuclear factor erythroid 2‐related factor 2 (NRF2) is a master regulator of oxidative stress that directs the expression of antioxidant genes and detoxifying proteins to maintain redox homeostasis. We established a rat model of NTDs in which pregnant dams were administered all‐trans (at)RA on gestational day 10, and oxidative stress levels and the spatiotemporal expression of NRF2 and its downstream targets were examined in the resulting embryos and in maternal blood. In the NTD group, total antioxidative capacity decreased and 8‐hydroxy‐2′‐deoxyguanosine increased in maternal serum and fetal spinal cord tissues. Plasma GSH content, the GSH/GSSG ratio, and glutathione peroxidase activity in fetal spinal cords were lower in the NTD group relative to controls. We detected NRF2 protein reduction and concomitant upregulation of Kelch‐like ECH‐associated protein 1 (KEAP1) ‐ a cytoplasmic inhibitor of NRF2 ‐ in the NTD group. The mRNA and protein levels of downstream targets of NRF2 were downregulated in the spinal cords of NTD embryos. These data demonstrate substantial oxidative stress and NRF2 signaling pathway disruption in a model of NTDs induced by atRA. The inhibitory effects of atRA on NRF2 signaling may lower cellular defenses against RA‐induced oxidative stress and could play important roles in NTD occurrence during embryonic development.

Collaboration


Dive into the Xiaowei Wei's collaboration.

Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge