Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaowei Zhou is active.

Publication


Featured researches published by Xiaowei Zhou.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013

Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

Xiaowei Zhou; Can Yang; Weichuan Yu

Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled examples to train a binary classifier, while background subtraction needs a training sequence that contains no objects to build a background model. To automate the analysis, object detection without a separate training phase becomes a critical task. People have tried to tackle this task by using motion information. But existing motion-based methods are usually limited when coping with complex scenarios such as nonrigid motion and dynamic background. In this paper, we show that the above challenges can be addressed in a unified framework named DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR). This formulation integrates object detection and background learning into a single process of optimization, which can be solved by an alternating algorithm efficiently. We explain the relations between DECOLOR and other sparsity-based methods. Experiments on both simulated data and real sequences demonstrate that DECOLOR outperforms the state-of-the-art approaches and it can work effectively on a wide range of complex scenarios.


computer vision and pattern recognition | 2016

Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video

Xiaowei Zhou; Menglong Zhu; Spyridon Leonardos; Konstantinos G. Derpanis; Kostas Daniilidis

This paper addresses the challenge of 3D full-body human pose estimation from a monocular image sequence. Here, two cases are considered: (i) the image locations of the human joints are provided and (ii) the image locations of joints are unknown. In the former case, a novel approach is introduced that integrates a sparsity-driven 3D geometric prior and temporal smoothness. In the latter case, the former case is extended by treating the image locations of the joints as latent variables to take into account considerable uncertainties in 2D joint locations. A deep fully convolutional network is trained to predict the uncertainty maps of the 2D joint locations. The 3D pose estimates are realized via an Expectation-Maximization algorithm over the entire sequence, where it is shown that the 2D joint location uncertainties can be conveniently marginalized out during inference. Empirical evaluation on the Human3.6M dataset shows that the proposed approaches achieve greater 3D pose estimation accuracy over state-of-the-art baselines. Further, the proposed approach outperforms a publicly available 2D pose estimation baseline on the challenging PennAction dataset.


computer vision and pattern recognition | 2015

3D shape estimation from 2D landmarks: A convex relaxation approach

Xiaowei Zhou; Spyridon Leonardos; Xiaoyan Hu; Kostas Daniilidis

We investigate the problem of estimating the 3D shape of an object, given a set of 2D landmarks in a single image. To alleviate the reconstruction ambiguity, a widely-used approach is to confine the unknown 3D shape within a shape space built upon existing shapes. While this approach has proven to be successful in various applications, a challenging issue remains, i.e., the joint estimation of shape parameters and camera-pose parameters requires to solve a nonconvex optimization problem. The existing methods often adopt an alternating minimization scheme to locally update the parameters, and consequently the solution is sensitive to initialization. In this paper, we propose a convex formulation to address this problem and develop an efficient algorithm to solve the proposed convex program. We demonstrate the exact recovery property of the proposed method, its merits compared to alternative methods, and the applicability in human pose and car shape estimation.


ACM Computing Surveys | 2015

Low-Rank Modeling and Its Applications in Image Analysis

Xiaowei Zhou; Can Yang; Hongyu Zhao; Weichuan Yu

Low-rank modeling generally refers to a class of methods that solves problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing, and bioinformatics. Recently, much progress has been made in theories, algorithms, and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attention to this topic. In this article, we review the recent advances of low-rank modeling, the state-of-the-art algorithms, and the related applications in image analysis. We first give an overview of the concept of low-rank modeling and the challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this article with some discussions.


computer vision and pattern recognition | 2017

Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose

Georgios Pavlakos; Xiaowei Zhou; Konstantinos G. Derpanis; Kostas Daniilidis

This paper addresses the challenge of 3D human pose estimation from a single color image. Despite the general success of the end-to-end learning paradigm, top performing approaches employ a two-step solution consisting of a Convolutional Network (ConvNet) for 2D joint localization and a subsequent optimization step to recover 3D pose. In this paper, we identify the representation of 3D pose as a critical issue with current ConvNet approaches and make two important contributions towards validating the value of end-to-end learning for this task. First, we propose a fine discretization of the 3D space around the subject and train a ConvNet to predict per voxel likelihoods for each joint. This creates a natural representation for 3D pose and greatly improves performance over the direct regression of joint coordinates. Second, to further improve upon initial estimates, we employ a coarse-to-fine prediction scheme. This step addresses the large dimensionality increase and enables iterative refinement and repeated processing of the image features. The proposed approach outperforms all state-of-the-art methods on standard benchmarks achieving a relative error reduction greater than 30% on average. Additionally, we investigate using our volumetric representation in a related architecture which is suboptimal compared to our end-to-end approach, but is of practical interest, since it enables training when no image with corresponding 3D groundtruth is available, and allows us to present compelling results for in-the-wild images.


international conference on computer vision | 2015

Multi-image Matching via Fast Alternating Minimization

Xiaowei Zhou; Menglong Zhu; Kostas Daniilidis

In this paper we propose a global optimization-based approach to jointly matching a set of images. The estimated correspondences simultaneously maximize pairwise feature affinities and cycle consistency across multiple images. Unlike previous convex methods relying on semidefinite programming, we formulate the problem as a low-rank matrix recovery problem and show that the desired semidefiniteness of a solution can be spontaneously fulfilled. The low-rank formulation enables us to derive a fast alternating minimization algorithm in order to handle practical problems with thousands of features. Both simulation and real experiments demonstrate that the proposed algorithm can achieve a competitive performance with an order of magnitude speedup compared to the state-of-the-art algorithm. In the end, we demonstrate the applicability of the proposed method to match the images of different object instances and as a result the potential to reconstruct category-specific object models from those images.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2017

Sparse Representation for 3D Shape Estimation: A Convex Relaxation Approach

Xiaowei Zhou; Menglong Zhu; Spyridon Leonardos; Kostas Daniilidis

We investigate the problem of estimating the 3D shape of an object defined by a set of 3D landmarks, given their 2D correspondences in a single image. A successful approach to alleviating the reconstruction ambiguity is the 3D deformable shape model and a sparse representation is often used to capture complex shape variability. But the model inference is still challenging due to the nonconvexity in the joint optimization of shape and viewpoint. In contrast to prior work that relies on an alternating scheme whose solution depends on initialization, we propose a convex approach to addressing this challenge and develop an efficient algorithm to solve the proposed convex program. We further propose a robust model to handle gross errors in the 2D correspondences. We demonstrate the exact recovery property of the proposed method, the advantage compared to several nonconvex baselines and the applicability to recover 3D human poses and car models from single images.


Bioinformatics | 2014

Piecewise-constant and low-rank approximation for identification of recurrent copy number variations.

Xiaowei Zhou; Jiming Liu; Xiang Wan; Weichuan Yu

MOTIVATION The post-genome era sees urgent need for more novel approaches to extracting useful information from the huge amount of genetic data. The identification of recurrent copy number variations (CNVs) from array-based comparative genomic hybridization (aCGH) data can help understand complex diseases, such as cancer. Most of the previous computational methods focused on single-sample analysis or statistical testing based on the results of single-sample analysis. Finding recurrent CNVs from multi-sample data remains a challenging topic worth further study. RESULTS We present a general and robust method to identify recurrent CNVs from multi-sample aCGH profiles. We express the raw dataset as a matrix and demonstrate that recurrent CNVs will form a low-rank matrix. Hence, we formulate the problem as a matrix recovering problem, where we aim to find a piecewise-constant and low-rank approximation (PLA) to the input matrix. We propose a convex formulation for matrix recovery and an efficient algorithm to globally solve the problem. We demonstrate the advantages of PLA compared with alternative methods using synthesized datasets and two breast cancer datasets. The experimental results show that PLA can successfully reconstruct the recurrent CNV patterns from raw data and achieve better performance compared with alternative methods under a wide range of scenarios. AVAILABILITY AND IMPLEMENTATION The MATLAB code is available at http://bioinformatics.ust.hk/pla.zip.


computer vision and pattern recognition | 2013

Active Contours with Group Similarity

Xiaowei Zhou; Xiaojie Huang; James S. Duncan; Weichuan Yu

Active contours are widely used in image segmentation. To cope with missing or misleading features in images, researchers have introduced various ways to model the prior of shapes and use the prior to constrain active contours. However, the shape prior is usually learnt from a large set of annotated data, which is not always accessible in practice. Moreover, it is often doubted that the existing shapes in the training set will be sufficient to model the new instance in the testing image. In this paper, we propose to use the group similarity of object shapes in multiple images as a prior to aid segmentation, which can be interpreted as an unsupervised approach of shape prior modeling. We show that the rank of the matrix consisting of multiple shapes is a good measure of the group similarity of the shapes, and the nuclear norm minimization is a simple and effective way to impose the proposed constraint on existing active contour models. Moreover, we develop a fast algorithm to solve the proposed model by using the accelerated proximal method. Experiments using echocardiographic image sequences acquired from acute canine experiments demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against image defects such as missing boundaries.


IEEE/ACM Transactions on Computational Biology and Bioinformatics | 2013

Multisample aCGH Data Analysis via Total Variation and Spectral Regularization

Xiaowei Zhou; Can Yang; Xiang Wan; Hongyu Zhao; Weichuan Yu

DNA copy number variation (CNV) accounts for a large proportion of genetic variation. One commonly used approach to detecting CNVs is array-based comparative genomic hybridization (aCGH). Although many methods have been proposed to analyze aCGH data, it is not clear how to combine information from multiple samples to improve CNV detection. In this paper, we propose to use a matrix to approximate the multisample aCGH data and minimize the total variation of each sample as well as the nuclear norm of the whole matrix. In this way, we can make use of the smoothness property of each sample and the correlation among multiple samples simultaneously in a convex optimization framework. We also developed an efficient and scalable algorithm to handle large-scale data. Experiments demonstrate that the proposed method outperforms the state-of-the-art techniques under a wide range of scenarios and it is capable of processing large data sets with millions of probes.

Collaboration


Dive into the Xiaowei Zhou's collaboration.

Top Co-Authors

Avatar

Kostas Daniilidis

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Weichuan Yu

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georgios Pavlakos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Menglong Zhu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Can Yang

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Wan

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Carlos Esteves

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge