Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaowen Mao is active.

Publication


Featured researches published by Xiaowen Mao.


Free Radical Biology and Medicine | 2013

N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes

Tingting Wang; Xiaowen Mao; Haobo Li; Shigang Qiao; Aimin Xu; Junwen Wang; Shaoqing Lei; Zipeng Liu; Kwok Fu Jacobus Ng; G. T. C. Wong; Paul M. Vanhoutte; Michael G. Irwin; Zhengyuan Xia

N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.


PLOS ONE | 2013

N-Acetylcysteine and Allopurinol Confer Synergy in Attenuating Myocardial Ischemia Injury via Restoring HIF-1α/HO-1 Signaling in Diabetic Rats

Xiaowen Mao; Tingting Wang; Yang Liu; Michael G. Irwin; Jing-song Ou; Xiao-long Liao; Xia Gao; Yuan Xu; Kwok F. J. Ng; Paul M. Vanhoutte; Zhengyuan Xia

Objectives To determine whether or not the antioxidants N-acetylcysteine (NAC) and allopurinol (ALP) confer synergistic cardioprotection against myocardial ischemia/reperfusion (MI/R) injury by stabilizing hypoxia inducible factor 1α (HIF-1α)/heme oxygenase 1 (HO-1) signaling in diabetic myocardium. Methods Control or diabetic [streptozotocin (STZ)-induced] Sprague Dawley rats received vehicle or NAC, ALP or their combination for four weeks starting one week after STZ injection. The animals were then subjected to thirty minutes of coronary artery occlusion followed by two hours reperfusion in the absence or presence of the selective HO-1 inhibitor, tin protoporphyrin-IX (SnPP-IX) or the HIF-1α inhibitor 2-Methoxyestradiol (2ME2). Cardiomyocytes exposed to high glucose were subjected to hypoxia/re-oxygenation in the presence or absence of HIF-1α and HO-1 achieved by gene knock-down with related siRNAs. Results Myocardial and plasma levels of 15-F2t-isoprostane, an index of oxidative stress, were significantly increased in diabetic rats while cardiac HO-1 protein and activity were reduced; this was accompanied with reduced cardiac protein levels of HIF-1α, and increased post-ischemic myocardial infarct size and cellular injury. NAC and ALP given alone and in particular their combination normalized cardiac levels of HO-1 and HIF-1α protein expression and prevented the increase in 15-F2t-isoprostane, resulting in significantly attenuated post-ischemic myocardial infarction. NAC and ALP also attenuated high glucose-induced post-hypoxic cardiomyocyte death in vitro. However, all the above protective effects of NAC and ALP were cancelled either by inhibition of HO-1 or HIF-1α with SnPP-IX and 2ME2 in vivo or by HO-1 or HIF-1α gene knock-down in vitro. Conclusion NAC and ALP confer synergistic cardioprotection in diabetes via restoration of cardiac HIF-1α and HO-1 signaling.


Critical Care Medicine | 2014

Propofol Ameliorates Hyperglycemia-Induced Cardiac Hypertrophy and Dysfunction via Heme Oxygenase-1/Signal Transducer and Activator of Transcription 3 Signaling Pathway in Rats

Junmei Xu; Haobo Li; Michael G. Irwin; Zhengyuan Xia; Xiaowen Mao; Shaoqing Lei; G. T. C. Wong; Hung; Chi Wai Cheung; Fang X; Alexander S. Clanachan; Zhong-yuan Xia

Objectives:Heme oxygenase-1 is inducible in cardiomyocytes in response to stimuli such as oxidative stress and plays critical roles in combating cardiac hypertrophy and injury. Signal transducer and activator of transcription 3 plays a pivotal role in heme oxygenase-1-mediated protection against liver and lung injuries under oxidative stress. We hypothesized that propofol, an anesthetic with antioxidant capacity, may attenuate hyperglycemia-induced oxidative stress in cardiomyocytes via enhancing heme oxygenase-1 activation and ameliorate hyperglycemia-induced cardiac hypertrophy and apoptosis via heme oxygenase-1/signal transducer and activator of transcription 3 signaling and improve cardiac function in diabetes. Design:Treatment study. Setting:Research laboratory.Subjects: Sprague-Dawley rats. Interventions:In vivo and in vitro treatments. Measurements and Main Results:At 8 weeks of streptozotocin-induced type 1 diabetes in rats, myocardial 15-F2t-isoprostane was significantly increased, accompanied by cardiomyocyte hypertrophy and apoptosis and impaired left ventricular function that was coincident with reduced heme oxygenase-1 activity and signal transducer and activator of transcription 3 activation despite an increase in heme oxygenase-1 protein expression as compared to control. Propofol infusion (900 &mgr;g/kg/min) for 45 minutes significantly improved cardiac function with concomitantly enhanced heme oxygenase-1 activity and signal transducer and activator of transcription activation. Similar to the changes seen in diabetic rat hearts, high glucose (25 mmol/L) exposure for 48 hours led to cardiomyocyte hypertrophy and apoptosis, both in primary cultured neonatal rat cardiomyocytes and in H9c2 cells compared to normal glucose (5.5 mmol/L). Hypertrophy was accompanied by increased reactive oxygen species and malondialdehyde production and caspase-3 activity. Propofol, similar to the heme oxygenase-1 inducer cobalt protoporphyrin, significantly increased cardiomyocyte heme oxygenase-1 and p-signal transducer and activator of transcription protein expression and heme oxygenase-1 activity and attenuated high-glucose-mediated cardiomyocyte hypertrophy and apoptosis and reduced reactive oxygen species and malondialdehyde production (p < 0.05). These protective effects of propofol were abolished by heme oxygenase-1 inhibition with zinc protoporphyrin and by heme oxygenase-1 or signal transducer and activator of transcription 3 gene knockdown. Conclusions:Heme oxygenase-1/signal transducer and activator of transcription 3 signaling plays a critical role in propofol-mediated amelioration of hyperglycemia-induced cardiomyocyte hypertrophy and apoptosis, whereby propofol improves cardiac function in diabetic rats.


Critical Care Medicine | 2016

Remifentanil Preconditioning Reduces Postischemic Myocardial Infarction and Improves Left Ventricular Performance via Activation of the Janus Activated Kinase-2/Signal Transducers and Activators of Transcription-3 Signal Pathway and Subsequent Inhibition of Glycogen Synthase Kinase-3β in Rats.

Shigang Qiao; Xiaowen Mao; Yan Wang; Shaoqing Lei; Yanan Liu; Tingting Wang; G. T. C. Wong; Chi Wai Cheung; Zhengyuan Xia; Michael G. Irwin

Objectives:Remifentanil preconditioning attenuates myocardial ischemia reperfusion injury, but the underlying mechanism is incompletely understood. The Janus activated kinase-2 (JAK2)/signal transducers and activators of transcription-3 (STAT3) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways are critical in both ischemic and pharmacologic preconditioning cardioprotection, which involve the inactivation of glycogen synthase kinase-3&bgr;. We hypothesized that remifentanil preconditioning confers cardioprotection via the JAK2/STAT3 and/or PI3K/Akt activation–mediated glycogen synthase kinase-3&bgr; inhibition. Design:Pharmacologic intervention. Setting:Research laboratory. Subjects:Male Sprague-Dawley rats. Interventions:In vivo and in vitro treatments. Measurements and Main Results:Male Sprague-Dawley rats (n = 6 per group) were sham operated or subjected to myocardial ischemia reperfusion injury. The JAK2 inhibitor AG490 (3 mg/kg), the PI3K inhibitor wortmannin (15 &mgr;g/kg), or the glycogen synthase kinase-3&bgr; inhibitor SB216763 (600 &mgr;g/kg) were given before inducing in vivo myocardial ischemia reperfusion injury achieved by occluding coronary artery for 30 minutes followed by 120 minutes of reperfusion in the absence or presence of remifentanil preconditioning (6 &mgr;g/kg/min). Also, isolated rat hearts were Langendorff perfused and subjected to 30 minutes of global ischemia and 120 minutes of reperfusion without or with remifentanil preconditioning (100 ng/mL) in the presence or absence of AG490 and/or SB216763. Isolated rat cardiomyocytes and H9C2 cells were subjected to hypoxia/reoxygenation alone or in combination with AG490 (100 &mgr;M), wortmannin (100 nM), or SB216763 (3 &mgr;M) without or with remifentanil preconditioning (2.5 &mgr;M). Remifentanil preconditioning reduced postischemic myocardial infarction and hemodynamic dysfunction induced by myocardial ischemia reperfusion injury concomitant with increased phosphorylation of STAT3 at tyr-705 (p-STAT3) and glycogen synthase kinase-3&bgr; but not Akt. AG490 but not wortmannin cancelled remifentanil preconditioning cardioprotection, and SB216763 restored it despite the presence of AG490. In Langendorff-perfused hearts, AG490-mediated cancellation of remifentanil preconditioning cardioprotection in attenuating postischemic myocardial infarction and creatinine kinase-MB release was reverted by concomitant administration of SB216763. Remifentanil preconditioning also attenuated posthypoxic cardiomyocyte injury and increased p-STAT3 and glycogen synthase kinase-3&bgr; in isolated primary cardiomyocytes and H9C2 cells. STAT3 gene knockdown with specific synthetic RNA cancelled remifentanil preconditioning cardioprotection, whereas glycogen synthase kinase-3&bgr; gene knockdown, which per se did not affect STAT3 under hypoxia/reoxygenation condition, preserved remifentanil preconditioning cardioprotection regardless of STAT3 abrogation. Conclusions:Remifentanil preconditioning confers cardioprotection primarily via activation of JAK2/STAT3 signaling that can function independent of PI3K/Akt activation. Glycogen synthase kinase-3&bgr; is a critical downstream effector of remifentanil preconditioning cardioprotection.


Cellular Physiology and Biochemistry | 2018

Repeated Non-Invasive Limb Ischemic Preconditioning Confers Cardioprotection Through PKC-Ԑ/STAT3 Signaling in Diabetic Rats

Chunyan Wang; Haobo Li; Sheng Wang; Xiaowen Mao; Dan Yan; Stanley Sau Ching Wong; Zhengyuan Xia; Michael G. Irwin

Background/Aims: Protein kinase C(PKC)-ε activation is a mechanism of preconditioning cardioprotection but its role in repeated non-invasive limb ischemic preconditioning (rNLIP) mediated cardioprotection against myocardial ischemia/reperfusion (I/R) injury in diabetes is unknown. Methods: Eight-week streptozotocin-induced diabetic and non-diabetic Sprague-Dawley rats were subjected to I/R without or with rNLIP. In vitro, H9C2 cells were cultured with high glucose (HG) and subjected to hypoxia/re-oxygenation (H/R) without or with PKC-ε or STAT3 gene knock-down in the absence or presence of remote time hypoxia preconditioning (HPC). Results: Diabetic rats displayed larger post-ischemic myocardial infarct size and higher troponin-I release with concomitant cardiac PKC-ԑ overexpression and activation manifested as increased membrane translocation, while phosphorylated STAT3 (p-STAT3) and Akt (p-Akt) were lower compared to non-diabetic rats (all P<0.05). rNLIP reduced infarct size in both non-diabetic and diabetic rats. rNLIP reduced post-ischemic cardiac PKC-ԑ activation in diabetic while increased PKC-ԑ activation in non-diabetic rats, resulting in increased cardiac p-STAT3 and p-Akt. In H9C2 cells, HG increased PKC-ԑ expression and exacerbated post-H/R injury, accompanied with reduced p-STAT3 and p-Akt, which were all reverted by HPC. These HPC protective effects were abolished by either PKC-ԑ or STAT3 gene knock-down, except that PKC-ԑ gene knock-down reverted HG and H/R-induced reduction of p-STAT3. Conclusion: rNLIP attenuates diabetic heart I/R injury by mitigating HG-induced PKC-ԑ overexpression and, subsequently, activating STAT3.


Clinical Science | 2012

PKCβ inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfuntion in rats with streptozotocin-induced diabetes

Yanan Liu; Shaoqing Lei; Xia Gao; Xiaowen Mao; Tingting Wang; G. T. C. Wong; Paul M. Vanhoutte; Michael G. Irwin; Zhengyuan Xia


Clinical Science | 2016

Cardioprotection from emulsified isoflurane postconditioning is lost in rats with streptozotocin-induced diabetes due to the impairment of Brg1/Nrf2/STAT3 signalling

Yan Wang; Haobo Li; Huansen Huang; Shiming Liu; Xiaowen Mao; Sheng Wang; Stanley Sau Ching Wong; Zhengyuan Xia; Michael G. Irwin


The FASEB Journal | 2010

PKC {beta} inhibitor ruboxistaurin prevents the increase of 15-F2t-isoprostane in the myocardium and plasma in Type 1 diabetic rats

Yanan Liu; Shaoqing Lei; Hui-min Liu; Xiaowen Mao; G. T. C. Wong; Paul M. Vanhoutte; Michael G. Irwin; Zhengyuan Xia


Archive | 2015

experimental diabetes cardiovascular tissues during early stages of Upregulation of PKC genes and isozymes in

Mack H. Wu; Ferenc L. Korompai; Sarah Y. Yuan; Pedro Geraldes; George L. King; Michael G. Irwin; Zhengyuan Xia; Yanan Liu; Shaoqing Lei; Xia Gao; Xiaowen Mao; Tingting Wang; Gordon Tc Wong; Rajprasad Loganathan; Lesya Novikova; Igor G. Boulatnikov; Irina V. Smirnova


Archive | 2014

Propofol confers cardioprotection via HO-1 dependent STAT3 activation in normal rats but via adiponectin dependent STAT3 activation in type 1 diabetic rats

Haobo Li; Xiaowen Mao; M. G. Irwin; Gtc Wong; As Clananchan; Pmgr Vanhoutte; Zhengyuan Xia

Collaboration


Dive into the Xiaowen Mao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tingting Wang

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yanan Liu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haobo Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Shigang Qiao

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Hui-min Liu

University of Hong Kong

View shared research outputs
Researchain Logo
Decentralizing Knowledge