Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaowu Liang is active.

Publication


Featured researches published by Xiaowu Liang.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray

Peter D. Crompton; Matthew A. Kayala; Boubacar Traore; Kassoum Kayentao; Aissata Ongoiba; Greta E. Weiss; Douglas M. Molina; Chad Burk; Michael Waisberg; Algis Jasinskas; Xiaolin Tan; Safiatou Doumbo; Didier Doumtabe; Younoussou Kone; David L. Narum; Xiaowu Liang; Ogobara K. Doumbo; Louis H. Miller; Denise L. Doolan; Pierre Baldi; Philip L. Felgner; Susan K. Pierce

Abs are central to malaria immunity, which is only acquired after years of exposure to Plasmodium falciparum (Pf). Despite the enormous worldwide burden of malaria, the targets of protective Abs and the basis of their inefficient acquisition are unknown. Addressing these knowledge gaps could accelerate malaria vaccine development. To this end, we developed a protein microarray containing ∼23% of the Pf 5,400-protein proteome and used this array to probe plasma from 220 individuals between the ages of 2–10 years and 18–25 years in Mali before and after the 6-month malaria season. Episodes of malaria were detected by passive surveillance over the 8-month study period. Ab reactivity to Pf proteins rose dramatically in children during the malaria season; however, most of this response appeared to be short-lived based on cross-sectional analysis before the malaria season, which revealed only modest incremental increases in Ab reactivity with age. Ab reactivities to 49 Pf proteins measured before the malaria season were significantly higher in 8–10-year-old children who were infected with Pf during the malaria season but did not experience malaria (n = 12) vs. those who experienced malaria (n = 29). This analysis also provided insight into patterns of Ab reactivity against Pf proteins based on the life cycle stage at which proteins are expressed, subcellular location, and other proteomic features. This approach, if validated in larger studies and in other epidemiological settings, could prove to be a useful strategy for better understanding fundamental properties of the human immune response to Pf and for identifying previously undescribed vaccine targets.


Proteomics | 2008

Profiling humoral immune responses to P. falciparum infection with protein microarrays

Denise L. Doolan; Yunxiang Mu; Berkay Unal; Suman Sundaresh; Siddiqua Hirst; Conrad Valdez; Arlo Randall; Douglas M. Molina; Xiaowu Liang; Daniel Freilich; J. Aggrey Oloo; Peter L. Blair; Joao C. Aguiar; Pierre Baldi; D. Huw Davies; Philip L. Felgner

A complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell‐free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides. The protein microarrays were probed with human sera from one of four groups which differed in immune status: sterile immunity or no immunity against experimental challenge following vaccination with radiation‐attenuated Pf sporozoites, partial immunity acquired by natural exposure, and no previous exposure to Pf. Overall, 72 highly reactive Pf antigens were identified. Proteomic features associated with immunoreactivity were identified. Importantly, antibody profiles were distinct for each donor group. Information obtained from such analyses will facilitate identifying antigens for vaccine development, dissecting the molecular basis of immunity, monitoring the outcome of whole‐organism vaccine trials, and identifying immune correlates of protection.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Dynamic antibody responses to the Mycobacterium tuberculosis proteome

Shajo Kunnath-Velayudhan; Hugh Salamon; Hui Yun Wang; Amy Davidow; Douglas M. Molina; Vu T. Huynh; Daniela M. Cirillo; Gerd Michel; Elizabeth A. Talbot; Mark D. Perkins; Philip L. Felgner; Xiaowu Liang; Maria L. Gennaro

Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host–pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.


Reviews in Analytical Chemistry | 2014

High Throughput Proteomics

Philip L. Felgner; Huw Davies; Xiaowu Liang

Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.


Malaria Journal | 2015

Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence

Elisabeth Baum; Jetsumon Sattabongkot; Jeeraphat Sirichaisinthop; Kirakorn Kiattibutr; David Huw Davies; Aarti Jain; Eugenia Lo; Ming-Chieh Lee; Arlo Randall; Douglas M. Molina; Xiaowu Liang; Liwang Cui; Philip L. Felgner; Guiyun Yan

BackgroundMalaria is a public health problem in parts of Thailand, where Plasmodium falciparum and Plasmodium vivax are the main causes of infection. In the northwestern border province of Tak parasite prevalence is now estimated to be less than 1% by microscopy. Nonetheless, microscopy is insensitive at low-level parasitaemia. The objective of this study was to assess the current epidemiology of falciparum and vivax malaria in Tak using molecular methods to detect exposure to and infection with parasites; in particular, the prevalence of asymptomatic infections and infections with submicroscopic parasite levels.MethodsThree-hundred microlitres of whole blood from finger-prick were collected into capillary tubes from residents of a sentinel village and from patients at a malaria clinic. Pelleted cellular fractions were screened by quantitative PCR to determine parasite prevalence, while plasma was probed on a protein microarray displaying hundreds of P. falciparum and P. vivax proteins to obtain antibody response profiles in those individuals.ResultsOf 219 samples from the village, qPCR detected 25 (11.4%) Plasmodium sp. infections, of which 92% were asymptomatic and 100% were submicroscopic. Of 61 samples from the clinic patients, 27 (44.3%) were positive by qPCR, of which 25.9% had submicroscopic parasite levels. Cryptic mixed infections, misdiagnosed as single-species infections by microscopy, were found in 7 (25.9%) malaria patients. All sample donors, parasitaemic and non-parasitaemic alike, had serological evidence of parasite exposure, with 100% seropositivity to at least 54 antigens. Antigens significantly associated with asymptomatic infections were P. falciparum MSP2, DnaJ protein, putative E1E2 ATPase, and three others.ConclusionThese findings suggest that parasite prevalence is higher than currently estimated by local authorities based on the standard light microscopy. As transmission levels drop in Thailand, it may be necessary to employ higher throughput and sensitivity methods for parasite detection in the phase of malaria elimination.


Vaccine | 2010

Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays.

Douglas M. Molina; Sukumar Pal; Mathew A. Kayala; Andy Teng; Paul J. Kim; Pierre Baldi; Philip L. Felgner; Xiaowu Liang; Luis M. de la Maza

Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen in the world. In order to control this infection there is an urgent need to formulate a vaccine. Identification of protective antigens is required to implement a subunit vaccine. To identify potential antigen vaccine candidates, three strains of mice, BALB/c, C3H/HeN and C57BL/6, were inoculated with live and inactivated C. trachomatis mouse pneumonitis (MoPn) by different routes of immunization. Using a protein microarray, serum samples collected after immunization were tested for the presence of antibodies against specific chlamydial antigens. A total of 225 open reading frames (ORF) of the C. trachomatis genome were cloned, expressed, and printed in the microarray. Using this protein microarray, a total of seven C. trachomatis dominant antigens were identified (TC0052, TC0189, TC0582, TC0660, TC0726, TC0816 and, TC0828) as recognized by IgG antibodies from all three strains of animals after immunization. In addition, the microarray was probed to determine if the antibody response exhibited a Th1 or Th2 bias. Animals immunized with live organisms mounted a predominant Th1 response against most of the chlamydial antigens while mice immunized with inactivated Chlamydia mounted a Th2-biased response. In conclusion, using a high throughput protein microarray we have identified a set of novel proteins that can be tested for their ability to protect against a chlamydial infection.


Journal of Proteome Research | 2011

Systems Biology Approach Predicts Antibody Signature Associated with Brucella melitensis Infection in Humans

Li Liang; Xiaolin Tan; Silvia Juarez; Homarh Villaverde; Jozelyn Pablo; Rie Nakajima-Sasaki; Eduardo Gotuzzo; Mayuko Saito; Gary Hermanson; Douglas M. Molina; Scott Felgner; W.John W Morrow; Xiaowu Liang; Robert H. Gilman; D. Huw Davies; Renée M. Tsolis; Joseph M. Vinetz; Philip L. Felgner

A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms.


PLOS ONE | 2013

Protein Microarray Analysis of Antibody Responses to Plasmodium falciparum in Western Kenyan Highland Sites with Differing Transmission Levels

Elisabeth Baum; Kingsley Badu; Douglas M. Molina; Xiaowu Liang; Philip L. Felgner; Guiyun Yan

Malaria represents a major public health problem in Africa. In the East African highlands, the high-altitude areas were previously considered too cold to support vector population and parasite transmission, rendering the region particularly prone to epidemic malaria due to the lack of protective immunity of the population. Since the 1980’s, frequent malaria epidemics have been reported and these successive outbreaks may have generated some immunity against Plasmodium falciparum amongst the highland residents. Serological studies reveal indirect evidence of human exposure to the parasite, and can reliably assess prevalence of exposure and transmission intensity in an endemic area. However, the vast majority of serological studies of malaria have been, hereto, limited to a small number of the parasite’s antigens. We surveyed and compared the antibody response profiles of age-stratified sera from residents of two endemic areas in the western Kenyan highlands with differing malaria transmission intensities, during two distinct seasons, against 854 polypeptides of P. falciparum using high-throughput proteomic microarray technology. We identified 107 proteins as serum antibody targets, which were then characterized for their gene ontology biological process and cellular component of the parasite, and showed significant enrichment for categories related to immune evasion, pathogenesis and expression on the host’s cell and parasite’s surface. Additionally, we calculated age-fitted annual seroconversion rates for the immunogenic proteins, and contrasted the age-dependent antibody acquisition for those antigens between the two sampling sites. We observed highly immunogenic antigens that produce stable antibody responses from early age in both sites, as well as less immunogenic proteins that require repeated exposure for stable responses to develop and produce different seroconversion rates between sites. We propose that a combination of highly and less immunogenic proteins could be used in serological surveys to detect differences in malaria transmission levels, distinguishing sites of unstable and stable transmission.


Infection and Immunity | 2011

Identification of Immunodominant Antigens by Probing a Whole Chlamydia trachomatis Open Reading Frame Proteome Microarray Using Sera from Immunized Mice

Maria I. Cruz-Fisher; Chunmei Cheng; Guifeng Sun; Sukumar Pal; Andy Teng; Douglas M. Molina; Matthew A. Kayala; Adam Vigil; Pierre Baldi; Philip L. Felgner; Xiaowu Liang; Luis M. de la Maza

ABSTRACT Chlamydia trachomatis infections can lead to severe chronic complications, including trachoma, ectopic pregnancy, and infertility. The only effective approach to disease control is vaccination. The goal of this work was to identify new potential vaccine candidates through a proteomics approach. We constructed a protein chip array (Antigen Discovery, Inc.) by expressing the open reading frames (ORFs) from C. trachomatis mouse pneumonitis (MoPn) genomic and plasmid DNA and tested it with serum samples from MoPn-immunized mice. Two groups of BALB/c female mice were immunized either intranasally or intravaginally with live elementary bodies (EB). Another two groups were immunized by a combination of the intramuscular and subcutaneous routes with UV-treated EB (UV-EB), using either CpG and Montanide as adjuvants to favor a Th1 response or alum to elicit a Th2 response. Serum samples collected at regular intervals postimmunization were tested in the proteome array. The microarray included the expression products of 909 proteins from a total of 921 ORFs of the Chlamydia MoPn genome and plasmid. A total of 185 immunodominant proteins elicited an early and sustained antibody response in the mice immunized with live EB, and of these, 71 were also recognized by the sera from mice immunized with UV-EB. The reactive antigens included some proteins that were previously described as immunogenic, such as the major outer membrane protein, OmpB, Hsp60, and IncA and proteins from the type III secretion system. In addition, we identified in mice several new immunogens, including 75 hypothetical proteins. In summary, we have identified a new group of immunodominant chlamydial proteins that can be tested for their ability to induce protection.


PLOS Neglected Tropical Diseases | 2010

Large Scale Immune Profiling of Infected Humans and Goats Reveals Differential Recognition of Brucella melitensis Antigens

Li Liang; Diana Leng; Chad Burk; Rie Nakajima-Sasaki; Matthew A. Kayala; Vidya L. Atluri; Jozelyn Pablo; Berkay Unal; Thomas A. Ficht; Eduardo Gotuzzo; Mayuko Saito; W. John W. Morrow; Xiaowu Liang; Pierre Baldi; Robert H. Gilman; Joseph M. Vinetz; Renée M. Tsolis; Philip L. Felgner

Brucellosis is a widespread zoonotic disease that is also a potential agent of bioterrorism. Current serological assays to diagnose human brucellosis in clinical settings are based on detection of agglutinating anti-LPS antibodies. To better understand the universe of antibody responses that develop after B. melitensis infection, a protein microarray was fabricated containing 1,406 predicted B. melitensis proteins. The array was probed with sera from experimentally infected goats and naturally infected humans from an endemic region in Peru. The assay identified 18 antigens differentially recognized by infected and non-infected goats, and 13 serodiagnostic antigens that differentiate human patients proven to have acute brucellosis from syndromically similar patients. There were 31 cross-reactive antigens in healthy goats and 20 cross-reactive antigens in healthy humans. Only two of the serodiagnostic antigens and eight of the cross-reactive antigens overlap between humans and goats. Based on these results, a nitrocellulose line blot containing the human serodiagnostic antigens was fabricated and applied in a simple assay that validated the accuracy of the protein microarray results in the diagnosis of humans. These data demonstrate that an experimentally infected natural reservoir host produces a fundamentally different immune response than a naturally infected accidental human host.

Collaboration


Dive into the Xiaowu Liang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Huw Davies

University of California

View shared research outputs
Top Co-Authors

Avatar

Jozelyn Pablo

University of California

View shared research outputs
Top Co-Authors

Avatar

Arlo Randall

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Baldi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Felgner

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge