Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaowu Tang is active.

Publication


Featured researches published by Xiaowu Tang.


Journal of Hazardous Materials | 2009

Adsorption behavior and mechanism of Cd(II) on loess soil from China

Yan Wang; Xiaowu Tang; Yunmin Chen; Liangtong Zhan; Zhenze Li; Qiang Tang

Cadmium is a toxic heavy metal that has caused serious public health problems. It is necessary to find a cost effective method to deal with wastewater containing Cd(II). Loess soils in China have proven to be a potential adsorbent for Cd(II) removal from wastewater. The adsorption capacity of loess towards Cd(II) has been determined to be about 9.37 mg g(-1). Slurry concentration, initial solution pH, reaction time and temperature have also been found to significantly influence the efficiency of Cd(II) removal. The adsorption isotherms and kinetics of loess soil from China can be best-fit with the Langmuir model and pseudo-second order kinetics model, respectively. The thermodynamic analysis revealed that the adsorption process was spontaneous, endothermic and the system disorder increased with duration. The natural organic matter in loess soil is mainly responsible for Cd(II) removal at pH < 4.2, while clay minerals contribute to a further gradual adsorption process. Chemical precipitation dominates the adsorption stage at pH > 8.97. Further studies using X-ray diffraction, Fourier transform infrared spectra of Cd(II) laden loess soil and Cd(II) species distribution have confirmed the adsorption mechanism.


Journal of Hazardous Materials | 2009

Adsorption behavior of Zn(II) on calcinated Chinese loess

Xiaowu Tang; Zhenze Li; Yunmin Chen

Chinese loess has proven to be effective in removing Zn(II) from aqueous solutions, but the resultant adsorbent-water slurry is difficult to separate. In this paper, the crude loess was calcinated to improve the separation efficiency of slurries in terms of sedimentary rate by increasing the particle sizes of the adsorbent. The sorption capacities of different sorbents, including crude loess, calcinated loess, de-organic crude loess and acid-treated calcinated loess, were obtained and sequenced. The adsorption capacity of the calcinated loess towards Zn(II) was found to be as high as 113.6 mg g(-1). The adsorption isotherms and kinetics of calcinated loess were best-fit with the Freundlich isotherm and the pseudo-second order kinetics, respectively. The thermodynamic analysis revealed that the adsorption was exothermic and spontaneous with a high preference for Zn(II) removal. The adsorption of Zn(II) on calcinated loess implies an ion exchange of the solute with calcite and goethite due to the observed FT-IR and XRD patterns as well as the predicted mean free energies (-11.58 to -9.28 kJ mol(-1) by D-R model). The byproduct of adsorption can be purified and refreshed by using a 0.01 M HCl solution.


International Journal for Numerical and Analytical Methods in Geomechanics | 2000

Consolidation by vertical drains under time‐dependent loading

Xiaowu Tang; Katsutada Onitsuka

A solution for the consolidation by vertical drains under time-dependent loading is presented in this paper. Considering the well resistance and the smear action, the simultaneous basic partial differential equations of the consolidation by vertical drains are obtained for the arbitrary loading method. However, the impulse function method cannot be directly applied to obtain the solution. The partial differential equations and the solution conditions that satisfy the impulse function method are obtained after some mathematical processing. The solution for the consolidation by vertical drains under time-dependent loading is obtained by virtue of the impulse function method and the solution under instantaneous loading. The solutions under single ramp loading and multi-ramp loading are obtained and the feasibility of Carrillos method under time-dependent loading is discussed. Further, the characteristics of the consolidation by vertical drains under instantaneous loading and time-dependent loading are discussed. Copyright


Journal of Hazardous Materials | 2009

Activation of Firmiana Simplex leaf and the enhanced Pb(II) adsorption performance: Equilibrium and kinetic studies

Zhenze Li; Xiaowu Tang; Yunmin Chen; Liming Wei; Yan Wang

Although various biosorbents have been reported effective to purify wastewaters containing heavy metals, the high tendency to decomposition in the environment makes them unsuitable for long-term persistent utilization. In this paper, a simple and new activation method was proposed to mineralize the Firmiana Simplex leaf (FSL) into an enhanced adsorbent for Pb(II) removal from aqueous solution. The leaves activated at various temperatures were characterized with BET N(2) adsorption test, FT-IR test and XRD test. After activation, the mass percent of inorganic components (including whewellite, quartz, phosphate and calcite) increased and the specific surface area increased from 0.08283 to 9.32 m(2)g(-1) with the increasing activation temperature (AT) from 100 to 400 degrees C. Proper activation temperature (200 degrees C) helps to preserve the beneficial groups (amine and carboxyl). The affinities of the adsorbents towards Pb(II) were increased with increasing AT from 300, 100, 200 to 400 degrees C according to the adsorption isotherms. The adsorbent activated at 200 degrees C (AL2) was found most suitable for Pb(II) adsorption regarding the high yield efficiency (36.52%), high Pb(II) adsorption capacity (136.7 mg g(-1) by Langmuir model), high adsorption affinity (H type isotherm) and rapid adsorption rate (within 20 min by kinetic study). The Pb(II) removal efficiency of AL2 was obviously affected by the solution pH rather than by the adsorbent dosage. The adsorption was viewed as a chemical process based on IR spectra along with a physical process based on the correlation between the average pore size of the adsorbent and the adsorption capacity. The activation method proposed in this paper was proved effective and potentially applicable in the treatment of Pb(II) polluted wastewaters.


Journal of Hazardous Materials | 2010

Removal of Cd(II) from aqueous solution with activated Firmiana Simplex Leaf: behaviors and affecting factors.

Qiang Tang; Xiaowu Tang; Manman Hu; Zhenze Li; Yunmin Chen; Peng Lou

Cadmium pollution is known to cause severe public health problems. This study is intended to examine the effect of an activated Firmiana Simplex Leaf (FSL) on the removal of Cd(II) from aqueous solution. Results showed that the active Firmiana Simplex Leaf could efficiently remove Cd(II) from wastewater due to the preservation of beneficial groups (amine, carboxyl, and phosphate) at a temperature of 250 degrees C. The adsorbent component, dosage, concentration of the initial solute, and the pH of the solution were all found to have significant effects on Cd(II) adsorption. The kinetic constants were predicted by pseudo-first-order kinetics, and the thermodynamic analysis revealed the endothermic and spontaneous nature of the adsorption. FT-IR and XRD analyses confirmed the strong adsorption between beneficial groups and cadmium ions, and the adsorption capacity was calculated to be 117.786 mg g(-1) according to the Langmuir isotherm.


Journal of Environmental Engineering | 2012

Zn(II) Removal with Activated Firmiana Simplex Leaf: Kinetics and Equilibrium Studies

Qiang Tang; Xiaowu Tang; Zhenze Li; Yan Wang; Manman Hu; Xiangjie Zhang; Yunmin Chen

As is known, zinc pollution has been a public environmental issue for a long time. Accordingly, the major objective of this study is to examine the effect of activated Firmiana simplex leaf on Zn(II) removal from aqueous solution. The result shows that activated Firmiana simplex leaf can remove Zn(II) effectively at 250°C due to the preservation of amine, carboxyl, and phosphate groups. Several factors were determined to have significant effects on the adsorption of Zn(II), including the adsorbent component, dosage, initial concentration, solution pH, temperature, and duration. Pseudo first order and pseudo second order kinetics equations were used to predict the kinetic and thermodynamic constants that reveal the endothermic and spontaneous nature of the adsorption. Using the Langmuir model, the maximum zinc adsorption capacity was calculated to be 55.096  mg/ g, which was subsequently confirmed by Fourier transformed infrared radiation (FT-IR) analyses and X-ray diffraction (XRD) spectra.


Journal of Hazardous Materials | 2010

Cd(II) adsorption on various adsorbents obtained from charred biomaterials.

Zhenze Li; Takeshi Katsumi; Shigeyoshi Imaizumi; Xiaowu Tang; Toru Inui

Cadmium could cause severe toxicant impact to living beings and is especially mobile in the environment. Biomass is abundant and effective to adsorb heavy metals, but is easy to be decomposed biologically which affects the reliability of long-run application. Several biomasses were charred with and without additives at temperatures less than 200°C in this study. The prepared adsorbents were further testified to remove Cd(II) from aqueous solution. Equilibrium and kinetic studies were performed in batch conditions. The effect of several experimental parameters on the cadmium adsorption kinetics namely: contact time, initial cadmium concentration, sorbent dose, initial pH of solution and ionic strength was evaluated. Kinetic study confirmed (1) the rapid adsorption of Cd(II) on GC within 10 min and (2) the following gradual intraparticle diffusion inwards the sorbent at neutral pH and outwards at strong acidic solution. The grass char (GC) was selected for further test according to its high adsorption capacity (115.8 mg g(-1)) and affinity (Langmuir type isotherm). The Cd(II) removal efficiency was increased with increasing solution pH while the highest achieved at sorbent dosage 10.0 g L(-1). The ionic strength affects the sorption of Cd(II) on GC to a limited extent whereas calcium resulted in larger competition to the sorption sites than potassium. Spectroscopic investigation revealed the adsorption mechanisms between Cd(II) and surface functional groups involving amine, carboxyl and iron oxide. The long-term stability of the pyrolyzed grass char and the potential application in engineering practices were discussed.


Journal of Environmental Sciences-china | 2009

Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants

Haijian Xie; Yunmin Chen; Han Ke; Xiaowu Tang; Renpeng Chen

The equivalence between multilayered barriers regarding diffusion and adsorption was studied. The bottom boundary of the liner system is defined by assuming concentration continuous and flux continuous conditions of the contaminant between the bottom liner layer and the underlying soil. Five different liner systems were compared in terms of solute breakthrough time. The results of the analysis showed that breakthrough time of the hydrophobic organic compounds for a 2-meter-thick compacted clay liner (CCL) could be 3-4 orders of magnitude is greater than the breakthrough time for a geosynthetic clay liner (GCL) composite liner. The GM/GCL and GM/CCL composite liner systems provide a better diffusion barrier for the hydrophilic organic compounds than that for the hydrophobic compounds due to their different Henrys coefficient. The calculated breakthrough times of the organic contaminants for the Chinese standard liner systems were found to be generally greater than those for the GCL alternatives, for the specific conditions examined. If the distribution coefficient increases to 2.8 for the hydrophobic compounds or 1.0 for the hydrophilic compounds, the thickness of the attenuation layer needed to achieve the same breakthrough time as the standard liner systems can be reduced by a factor of about 1.9-2.4. As far as diffusive and adsorption contaminant transport are concerned, GM or GCL is less effective than CCL.


Science of The Total Environment | 2014

An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation

Chi Guan; Haijian Xie; Yichen Wang; Y.M. Chen; Y.S. Jiang; Xiaowu Tang

An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems.


Chemosphere | 2011

An analytical solution to contaminant diffusion in semi-infinite clayey soils with piecewise linear adsorption

Haijian Xie; Yunmin Chen; Zhanghua Lou; Liangtong Zhan; Han Ke; Xiaowu Tang; Aimin Jin

The adsorption of contaminants onto soil particles typically is nonlinear if the contaminant concentration is sufficiently high. A simplified piecewise linear adsorption isotherm consistent with experimental results is proposed as an approximation for nonlinear adsorption behavior. This approximation allows for the use of analytical solution to model solute diffusion of contaminants that exhibit nonlinear adsorption. A moving boundary is introduced to represent significant changes in the retardation factor of clay with an increase in solute concentration. The proposed analytical solutions were validated using experimental data presented in the literature. There is negligible difference between the results obtained by the proposed analytical solution and those obtained by the linear model when C(m)/C(0) reached 0.5. The results also show that the model based on linear adsorption using the initial secant of the Freundlich isotherm leads to significantly lower estimated breakthrough time for the contaminant of interest than that obtained using the proposed model. The earlier breakthrough is due to an under-estimation of the amount of adsorption. The proposed method is relatively simple to apply and can be used for evaluating experimental results and verifying more complex numerical models.

Collaboration


Dive into the Xiaowu Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge