Xiaoxin Dai
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoxin Dai.
Biology of Reproduction | 2014
Xing Duan; Jun Liu; Xiaoxin Dai; Honglin Liu; Xiang-Shun Cui; Nam-Hyung Kim; Zhen-Bo Wang; Qiang Wang; Shao-Chen Sun
ABSTRACT During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.
Journal of Pineal Research | 2017
Mianqun Zhang; Xiaoxin Dai; Yajuan Lu; Yilong Miao; Changyin Zhou; Zhaokang Cui; Honglin Liu; Bo Xiong
Bisphenol A (BPA) has been reported to adversely affect the mammalian reproductive system in both sexes. However, the underlying mechanisms regarding how BPA disrupts the mammalian oocyte quality and how to prevent it have not been fully defined. Here, we document that BPA weakens oocyte quality by impairing both oocyte meiotic maturation and fertilization ability. We find that oral administration of BPA (100 μg/kg body weight per day for 7 days) compromises the first polar body extrusion (78.0% vs 57.0%, P<.05) by disrupting normal spindle assembly, chromosome alignment, and kinetochore‐microtubule attachment. This defect could be remarkably ameliorated (76.7%, P<.05) by concurrent oral administration of melatonin (30 mg/kg body weight per day for 7 days). In addition, BPA administration significantly decreases the fertilization rate of oocytes (87.2% vs 41.1%, P<.05) by reducing the number of sperm binding to the zona pellucida, which is consistent with the premature cleavage of ZP2 as well as the mis‐localization and decreased protein level of ovastacin. Also, the localization and protein level of Juno, the sperm receptor on the egg membrane, are strikingly impaired in BPA‐administered oocytes. Finally, we show that melatonin administration substantially elevates the in vitro fertilization rate (63.0%, P<.05) by restoring above defects of fertilization proteins and events, which might be mediated by the improvement of oocyte quality via reduction of ROS levels and inhibition of apoptosis. Collectively, our data reveal that melatonin has a protective action against BPA‐induced deterioration of oocyte quality in mice.
Human Reproduction | 2015
Xing Duan; Xiaoxin Dai; Teng Wang; Honglin Liu; Shao-Chen Sun
STUDY QUESTION Does melamine have a toxic effect on oocyte development and fertility in vivo? SUMMARY ANSWER Melamine had toxic effects on oocyte quality and fertility due to its effects on the oocyte cytoskeleton, apoptosis and autophagy induction, and epigenetic modifications in an in vivo mouse model. WHAT IS KNOWN ALREADY Melamine is a chemical compound that is widely used during the manufacture of amino resins and plastics. In 2008, melamine was reported to adulterate milk and infant formulas in China, which sparked food safety concerns worldwide. Ingesting melamine may result in reproductive damage, and bladder or kidney stones, which can lead to bladder cancer. STUDY DESIGN, SIZE, DURATION Mice were randomly assigned to three groups and fed a diet that included melamine (0, 10 and 50 mg/kg/day) for 8 weeks. The in vivo effect of melamine on female reproduction was examined. PARTICIPANTS/MATERIALS, SETTING, METHODS We used immunofluorescent staining, western blotting and qRT-PCR to examine the effect of melamine on oocyte quality. MAIN RESULTS AND THE ROLE OF CHANCE Our results showed the following effects of this melamine-containing diet. (i) Ovary weights were reduced in melamine fed mice. Oocyte developmental competence was also reduced, as shown by reduced polar body extrusion rates. (ii) Melamine feeding resulted in abnormal oocyte cytoskeletons, as shown by increased rates of aberrant spindles and reduced actin microfilament expression. (iii) Melamine exposed oocytes had higher rates of abnormal mitochondrial distributions and early stage apoptosis/autophagy, which were shown by increased microtubule-associated protein 1 light chain 3 (LC3) protein expression level and caspase 9, autophagy-related protein 14 (atg14), and lc3 mRNA levels. (iv) Fluorescence intensity analysis showed that DNA methylation levels were reduced in the oocytes of melamine fed mice. Histone methylation levels were also altered, as Di-methyl-Histone H3 (Lys4) (H3K4me2) level was increased and Tri-methyl-Histone H3 (Lys9) (H3K9me3), Di-methyl-Histone H3 (Lys9) (H3K9me2), and Tri-methyl-Histone H3 (Lys27) (H3K27me3) levels were reduced in oocytes from melamine fed mice. (v) The litter sizes of melamine fed mice were significantly reduced when compared with those of controls. LIMITATIONS, REASONS FOR CAUTION Although we examined the possible effects of melamine on oocyte quality and fertility, we did not determine the effect of melamine on offspring development. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that melamine plays a major role in oocyte quality and fertility. This information could contribute to a better understanding of melamine toxicity in female reproduction. STUDY FUNDING/COMPETING INTERESTS This study was supported by the National Basic Research Program of China (2014CB138503) and the Natural Science Foundation of Jiangsu Province (BK20140030). The authors have no conflict of interest to disclose.
PLOS ONE | 2012
Jun Liu; Qiao-Chu Wang; Fei Wang; Xing Duan; Xiaoxin Dai; Teng Wang; Honglin Liu; Xiang-Shun Cui; Nam-Hyung Kim; Shao-Chen Sun
The actin nucleation factor Arp2/3 complex is a main regulator of actin assembly and is involved in multiple processes like cell migration and adhesion, endocytosis, and the establishment of cell polarity in mitosis. Our previous work showed that the Arp2/3 complex was involved in the actin-mediated mammalian oocyte asymmetric division. However, the regulatory mechanisms and signaling pathway of Arp2/3 complex in meiosis is still unclear. In the present work, we identified that the nucleation promoting factors (NPFs) JMY and WAVE2 were necessary for the expression and localization of Arp2/3 complex in mouse oocytes. RNAi of both caused the degradation of actin cap intensity, indicating the roles of NPFs in the formation of actin cap. Moreover, JMY and WAVE2 RNAi decreased the expression of ARP2, a key component of Arp2/3 complex. However, knock down of Arp2/3 complex by Arpc2 and Arpc3 siRNA microinjection did not affect the expression and localization of JMY and WAVE2. Our results indicate that the NPFs, JMY and WAVE2, are upstream regulators of Arp2/3 complex in mammalian oocyte asymmetric division.
PLOS ONE | 2015
Xiaoxin Dai; Xing Duan; Xiang-Shun Cui; Nam-Hyung Kim; Bo Xiong; Shao-Chen Sun
Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.
Cell Cycle | 2017
Yilong Miao; Changyin Zhou; Zhaokang Cui; Xiaoxin Dai; Mianqun Zhang; Yajuan Lu; Bo Xiong
ABSTRACT Smc1β is a meiosis-specific cohesin subunit that is essential for sister chromatid cohesion and DNA recombination. Previous studies have shown that Smc1β-deficient mice in both sexes are sterile. Ablation of Smc1β during male meiosis leads to the blockage of spermatogenesis in pachytene stage, and ablation of Smc1β during female meiosis generates a highly error-prone oocyte although it could develop to metaphase II stage. However, the underlying mechanisms regarding how Smc1β maintains the correct meiotic progression in mouse oocytes have not been clearly defined. Here, we find that GFP-fused Smc1β is expressed and localized to the chromosomes from GV to MII stages during mouse oocyte meiotic maturation. Knockdown of Smc1β by microinjection of gene-specific morpholino causes the impaired spindle apparatus and chromosome alignment which are highly correlated with the defective kinetochore-microtubule attachments, consequently resulting in a prominently higher incidence of aneuploid eggs. In addition, the premature extrusion of polar bodies and escape of metaphase I arrest induced by low dose of nocodazole treatment in Smc1β-depleted oocytes indicates that Smc1β is essential for activation of spindle assembly checkpoint (SAC) activity. Collectively, we identify a novel function of Smc1β as a SAC participant beyond its role in chromosome cohesion during mouse oocyte meiosis.
Oncotarget | 2017
Mianqun Zhang; Xiaoxin Dai; Yalu Sun; Yajuan Lu; Changyin Zhou; Yilong Miao; Ying Wang; Bo Xiong
Stag3, a meiosis-specific subunit of cohesin complex, has been demonstrated to function in both male and female reproductive systems in mammals. However, its roles during oocyte meiotic maturation have not been fully defined. In the present study, we report that Stag3 uniquely accumulates on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Depletion of Stag3 by gene-targeting morpholino disrupts normal spindle assembly and chromosome alignment in oocytes. We also find that depletion of Stag3 reduces the acetylated level of tubulin and microtubule resistance to microtubule depolymerizing drug, suggesting that Stag3 is required for microtubule stability. Consistent with these observations, kinetochore-microtubule attachment, an important mechanism controlling chromosome alignment, is severely impaired in Stag3-depleted oocytes, resultantly causing the significantly increased incidence of aneuploid eggs. Collectively, our data reveal that Stag3 is a novel regulator of microtubule dynamics to ensure euploidy during moue oocyte meiotic maturation.
Microscopy and Microanalysis | 2013
Qiao-Chu Wang; Jun Liu; Fei Wang; Xing Duan; Xiaoxin Dai; Teng Wang; Honglin Liu; Xiang-Shun Cui; Shao-Chen Sun; Nam-Hyung Kim
During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.
Nucleic Acids Research | 2017
Yajuan Lu; Xiaoxin Dai; Mianqun Zhang; Yilong Miao; Changyin Zhou; Zhaokang Cui; Bo Xiong
Abstract Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, we report that Esco2 localizes to the chromosomes during oocyte meiotic maturation. Depletion of Esco2 by morpholino microinjection leads to the precocious polar body extrusion, the escape of metaphase I arrest induced by nocodazole treatment and the loss of BubR1 from kinetochores, indicative of inactivated SAC. Furthermore, depletion of Esco2 causes a severely impaired spindle assembly and chromosome alignment, accompanied by the remarkably elevated incidence of defective kinetochore-microtubule attachments which consequently lead to the generation of aneuploid eggs. Notably, we find that the involvement of Esco2 in SAC and kinetochore functions is mediated by its binding to histone H4 and acetylation of H4K16 both in vivo and in vitro. Thus, our data assign a novel meiotic function to Esco2 beyond its role in the cohesion establishment during mouse oocyte meiosis.
Biochimica et Biophysica Acta | 2016
Xiaoxin Dai; Mianqun Zhang; Yajuan Lu; Yilong Miao; Changyin Zhou; Bo Xiong
The Cullin9 gene encodes a putative E3 ligase that serves a wide variety of biological functions in mitosis, whereas its roles in meiosis have not yet clearly defined. Here, we report that Cullin9 accumulates on the spindle apparatus and colocalizes with the microtubule fibers during mouse oocyte meiotic maturation. Depletion of Cullin9 by morpholino microinjection results in a remarkably higher rate of disorganized spindles and misaligned chromosomes in oocytes, which is coupled with the impaired kinetochore-microtubule attachments. Resultantly, the incidence of aneuploid eggs significantly increases in Cullin9-depleted oocytes. Moreover, we show that Cullin9 controls Survivins protein level during meiotic maturation, and thus regulates microtubule stability in oocytes. Thus, our study assigns a new meiotic function to Cullin9 and reveals that it prevents mouse eggs from aneuploidy by regulating microtubule dynamics via Survivin.