Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoxing Han is active.

Publication


Featured researches published by Xiaoxing Han.


Nature Communications | 2013

Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels

Vikash P. Chauhan; John D. Martin; Hao Liu; Delphine A. Lacorre; Saloni R. Jain; Sergey V. Kozin; Triantafyllos Stylianopoulos; Ahmed S. Mousa; Xiaoxing Han; Pichet Adstamongkonkul; Zoran Popović; Peigen Huang; Moungi G. Bawendi; Yves Boucher; Rakesh K. Jain

Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors —inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells

Rekha Samuel; Laurence Daheron; Shan Liao; Trupti Vardam; Walid S. Kamoun; Ana Batista; Christa Buecker; Richard Schäfer; Xiaoxing Han; Patrick Au; David T. Scadden; Dan G. Duda; Dai Fukumura; Rakesh K. Jain

Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers—CD34, neuropilin 1, and human kinase insert domain-containing receptor—and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.


Cancer Discovery | 2016

Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy

Joao Incio; Hongye Liu; Priya Suboj; Shanmin Chin; Ivy Chen; Matthias Pinter; Mei R. Ng; Hadi Tavakoli Nia; Jelena Grahovac; Kao S; Suboj Babykutty; Yuhui Huang; Keehoon Jung; Nuh N. Rahbari; Xiaoxing Han; Vikash P. Chauhan; John D. Martin; Julia Kahn; Peigen Huang; Desphande; James S. Michaelson; Theodoros Michelakos; Cristina R. Ferrone; Raquel Soares; Yves Boucher; Dai Fukumura; Rakesh K. Jain

UNLABELLED It remains unclear how obesity worsens treatment outcomes in patients with pancreatic ductal adenocarcinoma (PDAC). In normal pancreas, obesity promotes inflammation and fibrosis. We found in mouse models of PDAC that obesity also promotes desmoplasia associated with accelerated tumor growth and impaired delivery/efficacy of chemotherapeutics through reduced perfusion. Genetic and pharmacologic inhibition of angiotensin-II type-1 receptor reverses obesity-augmented desmoplasia and tumor growth and improves response to chemotherapy. Augmented activation of pancreatic stellate cells (PSC) in obesity is induced by tumor-associated neutrophils (TAN) recruited by adipocyte-secreted IL1β. PSCs further secrete IL1β, and inactivation of PSCs reduces IL1β expression and TAN recruitment. Furthermore, depletion of TANs, IL1β inhibition, or inactivation of PSCs prevents obesity-accelerated tumor growth. In patients with pancreatic cancer, we confirmed that obesity is associated with increased desmoplasia and reduced response to chemotherapy. We conclude that cross-talk between adipocytes, TANs, and PSCs exacerbates desmoplasia and promotes tumor progression in obesity. SIGNIFICANCE Considering the current obesity pandemic, unraveling the mechanisms underlying obesity-induced cancer progression is an urgent need. We found that the aggravation of desmoplasia is a key mechanism of obesity-promoted PDAC progression. Importantly, we discovered that clinically available antifibrotic/inflammatory agents can improve the treatment response of PDAC in obese hosts. Cancer Discov; 6(8); 852-69. ©2016 AACR.See related commentary by Bronte and Tortora, p. 821This article is highlighted in the In This Issue feature, p. 803.


Journal of the American Chemical Society | 2015

Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors.

Christopher M. Lemon; Elizabeth Karnas; Xiaoxing Han; Oliver T. Bruns; Thomas J. Kempa; Dai Fukumura; Moungi G. Bawendi; Rakesh K. Jain; Dan G. Duda; Daniel G. Nocera

Micelles have been employed to encapsulate the supramolecular assembly of quantum dots with palladium(II) porphyrins for the quantification of O2 levels in aqueous media and in vivo. Förster resonance energy transfer from the quantum dot (QD) to the palladium porphyrin provides a means for signal transduction under both one- and two-photon excitation. The palladium porphyrins are sensitive to O2 concentrations in the range of 0-160 Torr. The micelle-encapsulated QD-porphyrin assemblies have been employed for in vivo multiphoton imaging and lifetime-based oxygen measurements in mice with chronic dorsal skinfold chambers or cranial windows. Our results establish the utility of the QD-micelle approach for in vivo biological sensing applications.


Circulation Research | 2013

Transgenic mice for cGMP imaging.

Martin Thunemann; Lai Wen; Matthias Hillenbrand; Susanne Feil; Thomas Ott; Xiaoxing Han; Dai Fukumura; Rakesh K. Jain; Michael Russwurm; Cor de Wit; Robert Feil

Rationale: Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. Objective: To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer–based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. Methods and Results: Mouse lines with smooth muscle–specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22&agr; promoter fragment or by targeted integration of a Cre recombinase–activatable expression cassette driven by the cytomegalovirus early enhancer/chicken &bgr;-actin/&bgr;-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were <100 nmol/L, whereas stimulation with cGMP-elevating agents such as 2-(N,N-diethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO) or the natriuretic peptides, atrial natriuretic peptide, and C-type natriuretic peptide evoked fluorescence resonance energy transfer changes corresponding to cGMP peak concentrations of ≈3 µmol/L. However, different types of smooth muscle cells had different sensitivities of their cGMP responses to DEA/NO, atrial natriuretic peptide, and C-type natriuretic peptide. Robust nitric oxide–induced cGMP transients with peak concentrations of ≈1 to >3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide–stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. Conclusions: These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs.


Intravital (Print) | 2012

Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment

Nathaniel D. Kirkpatrick; Euiheon Chung; Daniel C. Cook; Xiaoxing Han; Gabriel Gruionu; Shan Liao; Timothy P. Padera; Dai Fukumura; Rakesh K. Jain

The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.


Frontiers in Physiology | 2014

Correlative intravital imaging of cGMP signals and vasodilation in mice

Martin Thunemann; Kjestine Schmidt; Cor de Wit; Xiaoxing Han; Rakesh K. Jain; Dai Fukumura; Robert Feil

Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism.


BMC Clinical Pharmacology | 2013

Analysis of cGMP signalling with transgenic mice expressing FRET-based cGMP sensors

Lai Wen; Martin Thunemann; Susanne Feil; Matthias Hillenbrand; Thomas Ott; Xiaoxing Han; Dai Fukumura; Rakesh K. Jain; Cor de Wit; Michael Russwurm; Robert Feil

Background Sensor proteins that detect cGMP are valuable tools to analyse the molecular mechanisms underlying cGMP’s manifold physiological functions. These cGMP sensors allow for visualization and quantification of cGMP in living cells, in real time, and at high spatial and temporal resolution. For instance, they allow one to study sub-cellular cGMP compartments, and combined with multi-photon microscopy, they can provide new insights into complex biological processes, which can be analysed only in live animals.


Cancer Research | 2016

Abstract 898: Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy

Joao Incio; Priya Suboj; Shan M. Chin; Chen Ivy; Mei Ng; Hadi Tavakoli Nia; Jelena Grahovac; Hao Liu; Shannon Kao; Suboj Babykutty; Yuhui Huang; Keehoon Jung; Nuh N. Rahbari; Xiaoxing Han; Vikash P. Chauhan; John D. Martin; Julia Kahn; Peigen Huang; Raquel Soares; Yves Boucher; Dai Fukumura; Rakesh K. Jain

Introduction: With the current epidemic of obesity, the majority of pancreatic cancer patients are overweight or obese at diagnosis. Importantly, obesity worsens treatment outcomes in pancreatic cancer patients. Therefore, understanding the mechanisms that underlie the poorer prognosis of obese cancer patients is of paramount importance. Obesity causes inflammation and fibrosis in the normal pancreas due to the accumulation of dysfunctional hypertrophic adipocytes. Importantly, desmoplasia—a fibro-inflammatory microenvironment—is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and we have shown that activation of pancreatic stellate cells (PSCs) via angiotensin-II type 1 receptor (AT1) pathway is a major contribution to tumor desmoplasia. Whether obesity affects inflammation, PSCs and desmoplasia in PDACs, and interferes with delivery and response of chemotherapeutics is currently unknown. Experimental Design: Using mouse models of PDAC—multiple syngeneic models of PDAC: PAN02, AK4.4, KPC, iKRAS in diet-induced and genetic obese mouse models—we determined the effects of obesity on desmoplasia and inflammation, tumor growth and delivery and response to chemotherapy. We further evaluated whether the obesity-induced effects were mediated by AT1 signaling as well as via immune cell recruitment, and dissected the crosstalk between PSCs, cancer-associated adipocytes (CAAs), and tumor-associated neutrophils (TANs). In addition, we determined if an anti-diabetic drug metformin could counter these effects in vivo, and further dissected the mechanism of action in vitro. Results: We found that obesity aggravates desmoplasia in PDACs in multiple mouse models. In addition, tumors in obese mice presented with elevated levels of activated PSCs and fibrosis, as well as inflammatory cytokines and TANs. These alterations in the tumor microenvironment in obesity associated with accelerated tumor growth, reduced tumor blood perfusion and increased hypoxia, and impaired delivery and efficacy of chemotherapeutics. Genetic ablation and pharmacological inhibition (losartan) of AT1 signaling reversed obesity-augmented desmoplasia and tumor growth, and improved the response to chemotherapy to the level observed in lean mice. We further discovered the underlying mechanisms: 1) obesity increases intra-tumor adipocytes and IL-1s secretion by these cells; 2) increased IL-1s induces TAN recruitment; 3) recruited TANs activate PSCs; and 4) activated PSCs enhance desmoplasia. Conversely, activated PSCs also secrete IL-1s that recruits further TANs. Hence, inactivation of PSCs through AT1 blockade resulted in not only decreased fibrosis but also reduced IL-1s level and TAN recruitment. Furthermore, reduction of either TANs, IL-1s, or PSC activation reduced tumor growth in obese mice. These findings suggest that crosstalk between adipocytes, immune cells, and PSCs exacerbates desmoplasia and promotes tumor progression during obesity. Of clinical relevance, we found that metformin not only normalizes the abnormal systemic metabolism, but also alleviates the fibro-inflammatory microenvironment in pancreatic cancer in obesity/diabetes. This occurred via direct reprogramming of PSCs and immune cells by metformin. Importantly, the strategies described above were not effective in the normal weight setting. Conclusion: Here we successfully demonstrated that targeting desmoplasia, including immunomodulation with anti-IL-1s, or treatment with generic drugs such as losartan and metformin are potential strategies to potentiate treatments in PDAC patients with excess weight. With a better understanding of the mechanisms by which obesity promotes tumor progression and therapy resistance, we will be able to improve the current standard of care in pancreatic cancer. Citation Format: Joao Incio, Hao Liu, Priya Suboj, Shan Min, Ivy Chen, Mei Ng, Hadi Nia, Jelena Grahovac, Shannon Kao, Suboj Babykutty, Yuhui Huang, Keehoon Jung, Nuh Rahbari, Xiaoxing Han, Vikash Chauhan, John Martin, Julia Kahn, Peigen Huang, Vikram Deshpande, James Michaelson, Cristina Ferrone, Raquel Soares, Yves Boucher, Dai Fukumura, Rakesh Jain. Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. [abstract]. In: Proceedings of the AACR Special Conference on Engineering and Physical Sciences in Oncology; 2016 Jun 25-28; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2017;77(2 Suppl):Abstract nr A45.


Journal of Neuro-oncology | 2018

MicroRNA-378 enhances radiation response in ectopic and orthotopic implantation models of glioblastoma

Wende Li; Yujiao Liu; Weining Yang; Xiaoxing Han; Sen Li; Hao Liu; Leo E. Gerweck; Dai Fukumura; Jay S. Loeffler; Burton B. Yang; Rakesh K. Jain; Peigen Huang

Collaboration


Dive into the Xiaoxing Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Feil

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moungi G. Bawendi

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge