Xiaoxuan Xu
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoxuan Xu.
Current Medicinal Chemistry | 2015
Chun Hu; Lin Sun; Li Xiao; Yachun Han; Xiao Fu; Xiaofen Xiong; Xiaoxuan Xu; Yinghong Liu; Shikun Yang; Fuyou Liu; Yashpal S. Kanwar
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Redox biology | 2017
Li Xiao; Xiaoxuan Xu; Fan Zhang; Ming Wang; Yan Xu; Dan Tang; Jiahui Wang; Yan Qin; Yu Liu; Chengyuan Tang; Liyu He; Anna Greka; Zhiguang Zhou; Fuyou Liu; Zheng Dong; Lin Sun
Mitochondria play a crucial role in tubular injury in diabetic kidney disease (DKD). MitoQ is a mitochondria-targeted antioxidant that exerts protective effects in diabetic mice, but the mechanism underlying these effects is not clear. We demonstrated that mitochondrial abnormalities, such as defective mitophagy, mitochondrial reactive oxygen species (ROS) overexpression and mitochondrial fragmentation, occurred in the tubular cells of db/db mice, accompanied by reduced PINK and Parkin expression and increased apoptosis. These changes were partially reversed following an intraperitoneal injection of mitoQ. High glucose (HG) also induces deficient mitophagy, mitochondrial dysfunction and apoptosis in HK-2 cells, changes that were reversed by mitoQ. Moreover, mitoQ restored the expression, activity and translocation of HG-induced NF-E2-related factor 2 (Nrf2) and inhibited the expression of Kelch-like ECH-associated protein (Keap1), as well as the interaction between Nrf2 and Keap1. The reduced PINK and Parkin expression noted in HK-2 cells subjected to HG exposure was partially restored by mitoQ. This effect was abolished by Nrf2 siRNA and augmented by Keap1 siRNA. Transfection with Nrf2 siRNA or PINK siRNA in HK-2 cells exposed to HG conditions partially blocked the effects of mitoQ on mitophagy and tubular damage. These results suggest that mitoQ exerts beneficial effects on tubular injury in DKD via mitophagy and that mitochondrial quality control is mediated by Nrf2/PINK.
Current Medicinal Chemistry | 2014
Xiaoxuan Xu; Li Xiao; Ping Xiao; Shikun Yang; Guochun Chen; Fuyou Liu; Yashpal S. Kanwar; Lin Sun
Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy.
Laboratory Investigation | 2015
Li Xiao; Xun Zhou; Fuyou Liu; Chun Hu; Xuejing Zhu; Ying Luo; Ming Wang; Xiaoxuan Xu; Shikun Yang; Yashpal S. Kanwar; Lin Sun
Peritoneal dialysis (PD) is the most readily feasible home-dialysis method for renal replacement therapy. However, repeated use of PD can lead to induction of mesothelial/epithelial–mesenchymal transition (MMT/EMT) and fibrosis, eventually leading to ultrafiltration failure and discontinuation of PD. MicroRNA-129-5p (miR-129-5p) is believed to be a potent downstream inhibitor of TGF-β1 in renal fibrosis, but the effect of miR-129-5p on MMT/EMT relevant to PD is unknown. In this study, as determined by microRNA array analysis and confirmed by northern blot analysis and real-time PCR, we demonstrate that miRNA-129-5p is decreased in mesothelial cells isolated from effluent of patients having PD for more than 6 months extending to several years compared with those who have undergone PD for less than 6 months. The decreased expression of miR-129-5p was accompanied with alterations in EMT-related genes and the expression of respective proteins in vivo. In addition, in in vitro studies we noted that the expression of E-cadherin and claudin-1 were significantly reduced with increased cell migration in HMrSV5, a human peritoneal mesothelial cell line (HPMC), treated with TGF-β1, whereas expression of vimentin, fibronectin and transcription factors SIP1 and SOX4 increased significantly, as assessed by real-time PCR, western blot analysis and immunofluorescence microscopy. Furthermore, alteration in EMT-related genes and proteins were reversed by overexpression of miR-129-5p. No effect was observed in cells treated with miR-negative control. Meanwhile, inhibition of SIP1 and SOX4 with their respective siRNA also could decrease the expression of EMT-related genes and protein levels in HPMCs induced with TGF-β1. Finally, we demonstrate that SIP1 can inhibit the promoter activity of E-cadherin while enhancing the promoter activity of vimentin. We also observed that miR-129-5p could directly target the 3′UTR of SIP1 and SOX4 genes, and repressed their post-transcriptional activities. These data suggest that there is a novel TGF-β1/miR-129-5p/SIP-1 or SOX4 pathway that has a significant role in MMT and fibrosis in the setting of PD.
Free Radical Research | 2012
Li Xiao; Yan Ge; Lin Sun; Xiaoxuan Xu; Ping Xie; Ming Zhan; Ming Wang; Zheng Dong; Jun Li; Shao-Bin Duan; Fuyou Liu; Ping Xiao
Albumin induced epithelial-mesenchymal transition (EMT) of renal tubular cells through reactive oxygen species (ROS) pathway plays an important role in tubulointerstitial fibrosis. Cordycepin (3 -deoxyadenosine), a potential antioxidant, was demonstrated to have various pharmacological effects and could inhibit EMT of some cells. However, the role of cordycepin on albumin-induced EMT in renal tubular cells (HK2) is unclear. In this study, we investigated the effect of cordycepin on albumin-induced EMT of HK2 cells and its mechanisms. HK-2 cells were exposed to bovine serum albumin with or without pretreatment with cordycepin. Results showed that albumin significantly induced EMT formation of HK-2 which associated with NADPH oxidase activation and intracellular ROS overproduction through increased Rac1 activity and expression of NOX4, p22phox and p47phox, while these effects were abolished in that pretreated with cordycepin. In conclusion, cordycepin could ameliorate albumin-induced EMT of HK2 cells by decreasing NADPH oxidase activity and inhibiting ROS production.
BMC Infectious Diseases | 2014
Shikun Yang; Li Xiao; Hao Zhang; Xiaoxuan Xu; Panai Song; Fuyou Liu; Lin Sun
BackgroundBacterial peritonitis is serious disease and remains a diagnostic challenge for clinicians. Many studies have highlighted the potential usefulness of procalcitonin (PCT) for identification of bacterial peritonitis, however, the overall diagnostic value of PCT remains unclear. Therefore, we performed a meta-analysis to assess the accuracy of PCT for detection of bacterial peritonitis.MethodsWe performed a systematic searched in MEDLINE, EMBASE, SCOPUS, China Biology Medicine Database (CBM), China National Knowledge Infrastructure Database (CNKI) and Cochrane databases for trials that evaluated the diagnostic role of PCT for bacterial peritonitis. Sensitivity, specificity and other measures of accuracy of PCT were pooled using bivariate random effects models.ResultsEighteen studies involving 1827 patients were included in the present meta-analysis. The pooled sensitivity and specificity of serum PCT for the diagnosis bacterial peritonitis were 0.83 (95% CI: 0.76–0.89) and 0.92 (95% CI: 0.87–0.96), respectively. The positive likelihood ratio was 11.06 (95% CI: 6.31–19.38), negative likelihood ratio was 0.18 (95% CI: 0.12–0.27) and diagnostic odds ratio (DOR) was 61.52 (95% CI: 27.58–137.21). The area under the receiver operating characteristic curve (AUROC) was 0.94. Use of a common PCT cut-off value could improve the DOR to 75.32 and the AUROC to 0.95. Analysis of the seven studies that measured serum C-reactive protein (CRP) indicated that PCT was more accurate than CRP for the diagnosis of bacterial peritonitis.ConclusionsOur results indicate that PCT determination is a relatively sensitive and specific test for the diagnosis of bacterial peritonitis. However, with regard to methodological limitations and significant heterogeneity, medical decisions should be based on both clinical findings and PCT test results.
Renal Failure | 2014
Shikun Yang; Li Xiao; Bo Xu; Xiaoxuan Xu; Fuyou Liu; Lin Sun
Abstract Background: Vitamin E-coated dialyzer may have an effect on oxidative stress and inflammation status in hemodialysis (HD) patients. Therefore, we performed a systematic review to assess the anti-oxidation and anti-inflammatory effects of vitamin E-coated dialyzer in HD patients. Methods: The randomized controlled trials (RCTs) and quasi-RCTs of vitamin E-coated dialyzer versus conventional dialyzer for HD patients were searched from multiple databases. We screened relevant studies according to predefined inclusion criteria and performed meta-analyses using RevMan 5.1 software. Results: Meta-analysis showed vitamin E-coated dialyzer therapy could significantly decrease the serum thiobarbituric acid reacting substances (TBARS) (SMD, −0.95; 95% CI, −1.28 to −0.61; p < 0.00001), oxLDL (SMD, −0.61; 95% CI, −1.04 to −0.19; p = 0.005), interleukin-6 (IL-6) (SMD, −0.65; 95% CI, −0.97 to −0.32; p < 0.0001) and C-reactive protein (CRP) levels (SMD, −0.46; 95% CI, −0.87 to −0.05; p = 0.03) compared with that of the control group. However, vitamin E-coated dialyzer did not result in increasing the total antioxidant status (TAS) (SMD, 0.23; 95% CI, −0.16 to 0.61; p = 0.25) and the fractional clearance of urea index (Kt/v) levels (MD, −0.07; 95% CI, −0.14 to 0.00; p = 0.06), in addition, there was no significant difference in plasma superoxide dismutase (SOD) level compared with that of the conventional dialyzer & oral vitamin E group (SMD, 0.28; 95% CI, −0.20 to 0.75; p = 0.26). Conclusions: Vitamin E-coated dialyzer can reduce the oxidative stress and inflammation status reflected by the decreasing of serum TBARS, oxLDL, CRP, and IL-6 levels, and this new dialyzer does not affect the dialysis adequacy.
Oxidative Medicine and Cellular Longevity | 2014
Panai Song; Shikun Yang; Li Xiao; Xiaoxuan Xu; Chengyuan Tang; Yuyan Yang; Mingming Ma; Jiefu Zhu; Fuyou Liu; Lin Sun
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Renal tubular injury by overproduction of ROS in mitochondria plays a critical role in the pathogenesis of DKD. Evidences have shown that p66Shc was involved in renal tubular injury via mitochondrial-dependent ROS production pathway, but little is known about the upstream signaling of p66Shc that leads to tubular oxidative damage under high glucose conditions. In this study, an increased PKCδ and p66Shc activation and ROS production in renal tissues of patients with diabetic nephropathy were seen and further analysis revealed a positive correlation between the tubulointerstitial damage and p-PKCδ, p-p66Shc, and ROS production. In vitro, we investigated the phosphorylation and activation of p66Shc and PKCδ during treatment of HK-2 cells with high glucose (HG). Results showed that the activation of p66Shc and PKCδ was increased in a dose- and time-dependent manner, and this effect was suppressed by Rottlerin, a pharmacologic inhibitor of PKCδ. Moreover, PKCδ siRNA partially blocked HG-induced p66Shc phosphorylation, translocation, and ROS production in HK-2 cells. Taken together, these data suggest that activation of PKCδ promotes tubular cell injury through regulating p66Shc phosphorylation and mitochondrial translocation in HG ambient.
Scientific Reports | 2016
Xiaoxuan Xu; Xuejing Zhu; Mingming Ma; Yachun Han; Chun Hu; Shuguang Yuan; Yuan Yang; Li Xiao; Fuyou Liu; Yashpal S. Kanwar; Lin Sun
Increased p66Shc expression has been associated with diabetic nephropathy (DN). However, whether p66Shc can serve as a potential biomarker for tubular oxidative injury in DN is unknown. We measured the expression of p66Shc in peripheral blood monocytes (PBMs) and renal biopsy tissues from DN patients and then analysed the relationship between p66Shc expression and the clinical characteristics of patients with DN. Patients were divided into 4 groups (class IIa, class IIb, class III and the control group). qPCR, Western blotting and immunohistochemistry were performed. The results showed that both p66Shc and p-p66Shc expression significantly increased in PBMs and kidney tissues of DN patients. Moreover, Spearman’s correlation and multiple regression analyses were carried out. A positive relationship between the p66Shc expression and oxidative stress was found. p66Shc and oxidative stress were significant predictors of the degree of tubular damage. In addition, p66Shc expression was positively correlated with the concentrations of β-NAG, UACR and 8-OHdG, low-density lipoprotein and blood glucose levels, and duration of diabetes in patients with DN from class IIa to class III. These data indicated that increased expression of p66Shc may serve as a therapeutic target and a novel biomarker of DN.
BMC Cell Biology | 2015
Li Xiao; Xiang Peng; Fuyou Liu; Chengyuan Tang; Chun Hu; Xiaoxuan Xu; Ming Wang; Ying Luo; Shikun Yang; Panai Song; Ping Xiao; Yashpal S. Kanwar; Lin Sun
BackgroundTransforming growth factor-β1 (TGF-β1) plays a key role in mesothelial-to-mesenchymal transition (MMT) during peritoneal dialysis (PD). However, the role of Akt in MMT transformation in PD is not clear.ResultsIn this study, we observed that the phosphorylated form of protein kinase B (Akt), termed as pAkt, was up-regulated in the peritoneum of mice undergoing PD. It was associated with thickening of the peritoneum and up-regulation of TGF-β1. Upregulation of pAkt paralleled with the increased expression of Smad ubiquitination regulatory factor 2 (Smurf2), Vimentin and fibronectin (FN), and decreased expression of mothers against decapentaplegic homolog 7 (Smad7) and Zonula Occludens protein 1(ZO-1) in mice undergoing PD treatment and in TGF-β1 induced human peritoneal mesothelial cells (HPMCs). These changes were reversed with the treatment of a PI3K/Akt inhibitor LY294002 in vivo or in cells transfected with Akt dominant-negative (Akt-DN) plasmids in vitro. Increased Smurf2 expression in HPMCs, induced by TGF-β1 was accompanied with altered expression of Transforming growth factor receptor I (TβR-I), Smad7, ZO-1, Vimentin and FN via Akt modulation. In addition, inhibition of Ubiquitin carboxyl-terminal hydrolase 4 (USP4) decreased TGF- β1-induced expression of TβR-I and reversed the altered expression of Smad7, Smurf2, ZO-1 and Vimentin. Moreover, TGF-β1 accentuated the interactions between Smurf2 and Smad7, while reduced the association between TβR-I and Smurf2. These interactions were reversed by the treatment of Akt-DN and USP4 siRNA, respectively.ConclusionsThese data implied that Akt mediated MMT in PD via Smurf2 modulation/and or Smad7 degradation while conceivably maintaining the TβRI stability, most likely by the USP4.