Xiaoyan Guan
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoyan Guan.
Aging Cell | 2011
Ji Min Yu; Xiying Wu; Jeffrey M. Gimble; Xiaoyan Guan; Michael A. Freitas; Bruce A. Bunnell
The regeneration potential of mesenchymal stem cells (MSCs) diminishes with advanced age and this diminished potential is associated with changes in cellular functions. This study compared MSCs isolated from the bone marrow of rhesus monkeys (rBMSCs) in three age groups: young (< 5 years), middle (8–10 years), and old (> 12 years). The effects of aging on stem cell properties and indicators of stem cell fitness such as proliferation, differentiation, circadian rhythms, stress response proteins, miRNA expression, and global histone modifications in rBMSCs were analyzed. rBMSCs demonstrated decreased capacities for proliferation and differentiation as a function of age. The production of heat shock protein 70 (HSP70) and heat shock factor 1 (HSF1) were also reduced with increasing age. The level of a core circadian protein, Rev‐erb α, was significantly increased in rBMSCs from old animals. Furthermore, analysis of miRNA expression profiles revealed an up‐regulation of mir‐766 and mir‐558 and a down‐regulation of mir‐let‐7f, mir‐125b, mir‐222, mir‐199‐3p, mir‐23a, and mir‐221 in old rBMSCs compare to young rBMSCs. However, there were no significant age‐related changes in the global histone modification profiles of the four histone core proteins: H2A, H2B, H3, and H4 on rBMSCs. These changes represent novel insights into the aging process and could have implications regarding the potential for autologous stem cells therapy in older patients.
Molecular & Cellular Proteomics | 2013
Xiaoyan Guan; Neha Rastogi; Mark R. Parthun; Michael A. Freitas
In this paper we describe an approach that combines stable isotope labeling of amino acids in cells culture, high mass accuracy liquid chromatography tandem mass spectrometry and a novel data analysis approach to accurately determine relative peptide post-translational modification levels. This paper describes the application of this approach to the discovery of novel histone modification crosstalk networks in Saccharomyces cerevisiae. Yeast histone mutants were generated to mimic the presence/absence of 44 well-known modifications on core histones H2A, H2B, H3, and H4. In each mutant strain the relative change in H3 K79 methylation and H3 K56 acetylation were determined using stable isotope labeling of amino acids in cells culture. This approach showed relative changes in H3 K79 methylation and H3 K56 acetylation that are consistent with known histone crosstalk networks. More importantly, this study revealed additional histone modification sites that affect H3 K79 methylation and H3 K56 acetylation.
Molecular & Cellular Proteomics | 2016
Yu Chen; Michael E. Hoover; Xibei Dang; Alan A. Shomo; Xiaoyan Guan; Alan G. Marshall; Michael A. Freitas; Nicolas L. Young
Breast cancer was the second leading cause of cancer related mortality for females in 2014. Recent studies suggest histone H1 phosphorylation may be useful as a clinical biomarker of breast and other cancers because of its ability to recognize proliferative cell populations. Although monitoring a single phosphorylated H1 residue is adequate to stratify high-grade breast tumors, expanding our knowledge of how H1 is phosphorylated through the cell cycle is paramount to understanding its role in carcinogenesis. H1 analysis by bottom-up MS is challenging because of the presence of highly homologous sequence variants expressed by most cells. These highly basic proteins are difficult to analyze by LC-MS/MS because of the small, hydrophilic nature of peptides produced by tryptic digestion. Although bottom-up methods permit identification of several H1 phosphorylation events, these peptides are not useful for observing the combinatorial post-translational modification (PTM) patterns on the protein of interest. To complement the information provided by bottom-up MS, we utilized a top-down MS/MS workflow to permit identification and quantitation of H1 proteoforms related to the progression of breast cells through the cell cycle. Histones H1.2 and H1.4 were observed in MDA-MB-231 metastatic breast cells, whereas an additional histone variant, histone H1.3, was identified only in nonneoplastic MCF-10A cells. Progressive phosphorylation of histone H1.4 was identified in both cell lines at mitosis (M phase). Phosphorylation occurred first at S172 followed successively by S187, T18, T146, and T154. Notably, phosphorylation at S173 of histone H1.2 and S172, S187, T18, T146, and T154 of H1.4 significantly increases during M phase relative to S phase, suggesting that these events are cell cycle-dependent and may serve as markers for proliferation. Finally, we report the observation of the H1.2 SNP variant A18V in MCF-10A cells.
Nucleic Acids Research | 2015
Hui Wen Liu; Tapahsama Banerjee; Xiaoyan Guan; Michael A. Freitas; Jeffrey D. Parvin
Early steps of gene expression are a composite of promoter recognition, promoter activation, RNA synthesis and RNA processing, and it is known that SUMOylation, a post-translational modification, is involved in transcription regulation. We previously found that SUMO-1 marks chromatin at the proximal promoter regions of some of the most active housekeeping genes during interphase in human cells, but the SUMOylated targets on the chromatin remained unclear. In this study, we found that SUMO-1 marks the promoters of ribosomal protein genes via modification of the Scaffold Associated Factor B (SAFB) protein, and the SUMOylated SAFB stimulated both the binding of RNA polymerase to promoters and pre-mRNA splicing. Depletion of SAFB decreased RNA polymerase II binding to promoters and nuclear processing of the mRNA, though mRNA stability was not affected. This study reveals an unexpected role of SUMO-1 and SAFB in the stimulatory coupling of promoter binding, transcription initiation and RNA processing.
Journal of Biological Chemistry | 2013
Rinrada Luechapanichkul; Xianwen Chen; Hashem A. Taha; Shubham Vyas; Xiaoyan Guan; Michael A. Freitas; Christopher M. Hadad; Dehua Pei
Background: Factors that determine the in vivo substrate specificity of dual specificity phosphatases are currently unknown. Results: Specificity profiling of VHR through peptide library screening identified two distinct classes of peptide substrates, which bind to VHR in opposite orientations. Conclusion: VHR may act on a previously unrecognized class of protein substrates. Significance: The results should help identify new VHR substrates and elucidate its biological function. Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/φ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/φ)(T/S)(D/E)pY(G/A/S/Q) (where φ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1–6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp164, which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo.
Journal of Mass Spectrometry | 2015
Xiaoyan Guan; Kyle A. Noble; Yeqing Tao; Kenneth H. Roux; Shridhar K. Sathe; Nicolas L. Young; Alan G. Marshall
The potential epitope of a recombinant food allergen protein, cashew Ana o 1, reactive to monoclonal antibody, mAb 2G4, has been mapped by solution-phase amide backbone H/D exchange (HDX) monitored by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Purified mAb 2G4 was incubated with recombinant Ana o 1 (rAna o 1) to form antigen:monoclonal antibody (Ag:mAb) complexes. Complexed and uncomplexed (free) rAna o 1 were then subjected to HDX-MS analysis. Five regions protected from H/D exchange upon mAb binding are identified as potential conformational epitope-contributing segments.
Molecular and Cellular Biology | 2013
Zhongqi Ge; Devi Nair; Xiaoyan Guan; Neha Rastogi; Michael A. Freitas; Mark R. Parthun
ABSTRACT The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.
Rapid Communications in Mass Spectrometry | 2015
Naomi C. Brownstein; Xiaoyan Guan; Yuan Mao; Qian Zhang; Peter A. DiMaggio; Qiangwei Xia; Lichao Zhang; Alan G. Marshall; Nicolas L. Young
RATIONALE Paired Lys-N and Lys-C proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Data from these parallel experiments provide constraints that are applied before data analysis. With this approach, we can find matched spectra before analysis, distinguish ion type, and determine residue level confidence. METHODS Aliquots are digested separately by Lys-N and Lys-C peptidases, and analyzed by reversed-phase nano-flow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Matched pairs of fragmentation spectra with equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion type, residues, and peptides. The paired spectra are solved together as a single de novo sequencing problem. RESULTS Two pairs of spectra of a de novo sequenced 18-mer are presented. In one example, the 18-mer has coverage of all residues except the N- and C- terminal lysines and their adjacent residues. The confidence level is high due to six pairs of transposed ions. In the other example, the coverage is incomplete. Nonetheless, nine pairs of transposed ions facilitate identification of two trimer sequence tags with high confidence, one with medium confidence, and additional sequence information with residue-by-residue confidence, thus demonstrating the value of residue-by-residue confidence. CONCLUSIONS Sequence identity and variability, such as post-translational modifications (PTMs), are essential to understanding biological function and disease. The present method facilitates discovery of new peptides with multiple levels of confidence, promises potential characterization of PTMs, and validates peptides from databases. Independent validation may be of interest for a number of applications.
Journal of Proteome Research | 2014
Xiaoyan Guan; Neha Rastogi; Mark R. Parthun; Michael A. Freitas
This paper describes an algorithm to assist in relative quantitation of peptide post-translational modifications using stable isotope labeling by amino acids in cell culture (SILAC). The described algorithm first determines the normalization factor and then calculates SILAC ratios for a list of target peptide masses using precursor ion abundances. Four yeast histone mutants were used to demonstrate the effectiveness of this approach for quantitation of peptide post-translational modifications changes. The details of the algorithms approach for normalization and peptide ratio calculation are described. The examples demonstrate the robustness of the approach as well as its utility to rapidly determine changes in peptide post-translational modifications within a protein.
Rapid Communications in Mass Spectrometry | 2017
Xiaoyan Guan; Naomi C. Brownstein; Nicolas L. Young; Alan G. Marshall