Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoyan Pang is active.

Publication


Featured researches published by Xiaoyan Pang.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Symbiotic gut microbes modulate human metabolic phenotypes

Min Li; Baohong Wang; Menghui Zhang; Mattias Rantalainen; Wang S; Haokui Zhou; Yan Zhang; Jian Shen; Xiaoyan Pang; Meiling Zhang; Hua Wei; Yu Chen; Haifeng Lu; Jian Zuo; Mingming Su; Yunping Qiu; Wei Jia; Chaoni Xiao; Leon M. Smith; Shengli Yang; Elaine Holmes; Huiru Tang; Guoping Zhao; Jeremy K. Nicholson; Lanjuan Li; Liping Zhao

Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (microbiome) and individual variations in the microbiome influence host health, may be implicated in disease etiology, and affect drug metabolism, toxicity, and efficacy. However, the molecular basis of these microbe–host interactions and the roles of individual bacterial species are obscure. We now demonstrate a“transgenomic” approach to link gut microbiome and metabolic phenotype (metabotype) variation. We have used a combination of spectroscopic, microbiomic, and multivariate statistical tools to analyze fecal and urinary samples from seven Chinese individuals (sampled twice) and to model the microbial–host metabolic connectivities. At the species level, we found structural differences in the Chinese family gut microbiomes and those reported for American volunteers, which is consistent with population microbial cometabolic differences reported in epidemiological studies. We also introduce the concept of functional metagenomics, defined as “the characterization of key functional members of the microbiome that most influence host metabolism and hence health.” For example, Faecalibacterium prausnitzii population variation is associated with modulation of eight urinary metabolites of diverse structure, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. Other species were identified showing different and varied metabolic interactions. Our approach for understanding the dynamic basis of host–microbiome symbiosis provides a foundation for the development of functional metagenomics as a probe of systemic effects of drugs and diet that are of relevance to personal and public health care solutions.


The ISME Journal | 2010

Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice.

Chenhong Zhang; Menghui Zhang; Wang S; Ruijun Han; Youfang Cao; Weiying Hua; Yuejian Mao; Xiaojun Zhang; Xiaoyan Pang; Chaochun Wei; Guoping Zhao; Yan(陈雁) Chen; Liping Zhao

Both genetic variations and diet-disrupted gut microbiota can predispose animals to metabolic syndromes (MS). This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota and modulating MS-relevant phenotypes in mice. Together with its wild-type (Wt) counterpart, the Apoa-I knockout mouse, which has impaired glucose tolerance (IGT) and increased body fat, was fed a high-fat diet (HFD) or normal chow (NC) diet for 25 weeks. DNA fingerprinting and bar-coded pyrosequencing of 16S rRNA genes were used to profile gut microbiota structures and to identify the key population changes relevant to MS development by Partial Least Square Discriminate Analysis. Diet changes explained 57% of the total structural variation in gut microbiota, whereas genetic mutation accounted for no more than 12%. All three groups with IGT had significantly different gut microbiota relative to healthy Wt/NC-fed animals. In all, 65 species-level phylotypes were identified as key members with differential responses to changes in diet, genotype and MS phenotype. Most notably, gut barrier-protecting Bifidobacterium spp. were nearly absent in all animals on HFD, regardless of genotype. Sulphate-reducing, endotoxin-producing bacteria of the family, Desulfovibrionaceae, were enhanced in all animals with IGT, most significantly in the Wt/HFD group, which had the highest calorie intake and the most serious MS phenotypes. Thus, diet has a dominating role in shaping gut microbiota and changes of some key populations may transform the gut microbiota of Wt animals into a pathogen-like entity relevant to development of MS, despite a complete host genome.


The ISME Journal | 2012

Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers

Tingting Wang; Guoxiang Cai; Yunping Qiu; Na Fei; Menghui Zhang; Xiaoyan Pang; Wei Jia; Sanjun Cai; Liping Zhao

Despite a long-suspected role in the development of human colorectal cancer (CRC), the composition of gut microbiota in CRC patients has not been adequately described. In this study, fecal bacterial diversity in CRC patients (n=46) and healthy volunteers (n=56) were profiled by 454 pyrosequencing of the V3 region of the 16S ribosomal RNA gene. Both principal component analysis and UniFrac analysis showed structural segregation between the two populations. Forty-eight operational taxonomic units (OTUs) were identified by redundancy analysis as key variables significantly associated with the structural difference. One OTU closely related to Bacteroides fragilis was enriched in the gut microbiota of CRC patients, whereas three OTUs related to Bacteroides vulgatus and Bacteroides uniformis were enriched in that of healthy volunteers. A total of 11 OTUs belonging to the genera Enterococcus, Escherichia/Shigella, Klebsiella, Streptococcus and Peptostreptococcus were significantly more abundant in the gut microbiota of CRC patients, and 5 OTUs belonging to the genus Roseburia and other butyrate-producing bacteria of the family Lachnospiraceae were less abundant. Real-time quantitative PCR further validated the significant reduction of butyrate-producing bacteria in the gut microbiota of CRC patients by measuring the copy numbers of butyryl-coenzyme A CoA transferase genes (Mann–Whitney test, P<0.01). Reduction of butyrate producers and increase of opportunistic pathogens may constitute a major structural imbalance of gut microbiota in CRC patients.


PLOS ONE | 2012

Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats

Xu Zhang; Yufeng Zhao; Menghui Zhang; Xiaoyan Pang; Jia Xu; Chaoying Kang; Meng Li; Chenhong Zhang; Zhiguo Zhang; Zhang Y; Xiaoying Li; Guang Ning; Liping Zhao

Berberine, a major pharmacological component of the Chinese herb Coptis chinensis, which was originally used to treat bacterial diarrhea, has recently been demonstrated to be clinically effective in alleviating type 2 diabetes. In this study, we revealed that berberine effectively prevented the development of obesity and insulin resistance in high-fat diet (HFD)-fed rats, which showed decreased food intake. Increases in the levels of serum lipopolysaccharide-binding protein, monocyte chemoattractant protein-1, and leptin and decrease in the serum level of adiponectin corrected for body fat in HFD-fed rats were also significantly retarded by the co-administration of berberine at 100 mg/kg body weight. Bar-coded pyrosequencing of the V3 region of 16S rRNA genes revealed a significant reduction in the gut microbiota diversity of berberine-treated rats. UniFrac principal coordinates analysis revealed a marked shift of the gut microbiota structure in berberine-treated rats away from that of the controls. Redundancy analysis identified 268 berberine-responding operational taxonomic units (OTUs), most of which were essentially eliminated, whereas a few putative short-chain fatty acid (SCFA)-producing bacteria, including Blautia and Allobaculum, were selectively enriched, along with elevations of fecal SCFA concentrations. Partial least square regression models based on these 268 OTUs were established (Q2>0.6) for predicting the adiposity index, body weight, leptin and adiponectin corrected for body fat, indicating that these discrete phylotypes might have a close association with the host metabolic phenotypes. Taken together, our findings suggest that the prevention of obesity and insulin resistance by berberine in HFD-fed rats is at least partially mediated by structural modulation of the gut microbiota, which may help to alleviate inflammation by reducing the exogenous antigen load in the host and elevating SCFA levels in the intestine.


Nature Communications | 2013

Structural modulation of gut microbiota in life-long calorie-restricted mice

Chenhong Zhang; Shoufeng Li; Liu(杨柳) Yang; Ping Huang; Wen-Jun Li; Wang S; Guoping Zhao; Menghui Zhang; Xiaoyan Pang; Zhen Yan; Yong(刘勇) Liu; Liping Zhao

Calorie restriction has been regarded as the only experimental regimen that can effectively lengthen lifespan in various animal models, but the actual mechanism remains controversial. The gut microbiota has been shown to have a pivotal role in host health, and its structure is mostly shaped by diet. Here we show that life-long calorie restriction on both high-fat or low-fat diet, but not voluntary exercise, significantly changes the overall structure of the gut microbiota of C57BL/6 J mice. Calorie restriction enriches phylotypes positively correlated with lifespan, for example, the genus Lactobacillus on low-fat diet, and reduces phylotypes negatively correlated with lifespan. These calorie restriction-induced changes in the gut microbiota are concomitant with significantly reduced serum levels of lipopolysaccharide-binding protein, suggesting that animals under calorie restriction can establish a structurally balanced architecture of gut microbiota that may exert a health benefit to the host via reduction of antigen load from the gut.


The ISME Journal | 2012

Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations

Chenhong Zhang; Menghui Zhang; Xiaoyan Pang; Yufeng Zhao; Linghua Wang; Liping Zhao

Disruption of the gut microbiota by high-fat diet (HFD) has been implicated in the development of obesity. It remains to be elucidated whether the HFD-induced shifts occur at the phylum level or whether they can be attributed to specific phylotypes; additionally, it is unclear to what extent the changes are reversible under normal chow (NC) feeding. One group (diet-induced obesity, DIO) of adult C57BL/6J mice was fed a HFD for 12 weeks until significant obesity and insulin resistance were observed, and then these mice were switched to NC feeding for 10 weeks. Upon switching to NC feeding, the metabolic deteriorations observed during HFD consumption were significantly alleviated. The second group (control, CHO) remained healthy under continuous NC feeding. UniFrac analysis of bar-coded pyrosequencing data showed continued structural segregation of DIO from CHO on HFD. At 4 weeks after switching back to NC, the gut microbiota in the DIO group had already moved back to the CHO space, and continued to progress along the same age trajectory and completely converged with CHO after 10 weeks. Redundancy analysis identified 77 key phylotypes responding to the dietary perturbations. HFD-induced shifts of these phylotypes all reverted to CHO levels over time. Some of these phylotypes exhibited robust age-related changes despite the dramatic abundance variations in response to dietary alternations. These findings suggest that HFD-induced structural changes of the gut microbiota can be attributed to reversible elevation or diminution of specific phylotypes, indicating the significant structural resilience of the gut microbiota of adult mice to dietary perturbations.


FEMS Microbiology Ecology | 2014

A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome

Shuiming Xiao; Na Fei; Xiaoyan Pang; Jian Shen; Linghua Wang; Baorang Zhang; Menghui Zhang; Xiaojun Zhang; Chenhong Zhang; Min Li; Lifeng Sun; Zhengsheng Xue; Jingjing Wang; Jie Feng; Feiyan Yan; Naisi Zhao; Jiaqi Liu; Wenmin Long; Liping Zhao

Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m−2) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes.


Scientific Reports | 2015

Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.

Xu Zhang; Yufeng Zhao; Jia Xu; Zhengsheng Xue; Menghui Zhang; Xiaoyan Pang; Xiaojun Zhang; Liping Zhao

Accumulating evidence suggests that the gut microbiota is an important factor in mediating the development of obesity-related metabolic disorders, including type 2 diabetes. Metformin and berberine, two clinically effective drugs for treating diabetes, have recently been shown to exert their actions through modulating the gut microbiota. In this study, we demonstrated that metformin and berberine similarly shifted the overall structure of the gut microbiota in rats. Both drugs showed reverting effects on the high-fat diet-induced structural changes of gut microbiota. The diversity of gut microbiota was significantly reduced by both berberine- and metformin-treatments. Nearest shrunken centroids analysis identified 134 operational taxonomic units (OTUs) responding to the treatments, which showed close associations with the changes of obese phenotypes. Sixty out of the 134 OTUs were decreased by both drugs, while those belonging to putative short-chain fatty acids (SCFA)-producing bacteria, including Allobaculum, Bacteriodes, Blautia, Butyricoccus, and Phascolarctobacterium, were markedly increased by both berberine and, to a lesser extent, metformin. Taken together, our findings suggest that berberine and metformin showed similarity in modulating the gut microbiota, including the enrichment of SCFA-producing bacteria and reduction of microbial diversity, which may contribute to their beneficial effects to the host.


The ISME Journal | 2007

Inter-Species Transplantation of Gut Microbiota from Human to Pigs

Xiaoyan Pang; Xiuguo Hua; Qian Yang; Dezhong Ding; Chuanyan Che; Li Cui; Wei Jia; Peter Bucheli; Liping Zhao

Direct research on gut microbiota for understanding its role as ‘an important organ’ in human individuals is difficult owing to its vast diversity and host specificity as well as ethical concerns. Transplantation of human gut microbiota into surrogate hosts can significantly facilitate the research of human gut ecology, metabolism and immunity but rodents-based model provides results with low relevance to humans. A new human flora-associated (HFA) piglet model was hereby established taking advantage of the high similarity between pigs and humans with respect to the anatomy, physiology and metabolism of the digestive system. Piglets were delivered via cesarean section into a SPF-level barrier system and were inoculated orally with a whole fecal suspension from one healthy 10-year-old boy. The establishment and composition of the intestinal microbiota of the HFA piglets were analyzed and compared with that of the human donor using enterobacterial repetitive intergenic consensus sequence-PCR fingerprinting-based community DNA hybridization, group-specific PCR-temperature gradient gel electrophoresis and real-time PCR. Molecular profiling demonstrated that transplantation of gut microbiota from a human to germfree piglets produced a donor-like microbial community with minimal individual variation. And the microbial succession with aging of those ex-germfree piglets was also similar to that observed in humans. This HFA model provides a significantly improved system for research on gut ecology in human metabolism, nutrition and drug discovery.


EBioMedicine | 2015

Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children

Chenhong Zhang; Aihua Yin; Hongde Li; Ruirui Wang; Guojun Wu; Jian Shen; Menghui Zhang; Linghua Wang; Yaping Hou; Haimei Ouyang; Yan Zhang; Yinan Zheng; Jicheng Wang; Xiaofei Lv; Yulan Wang; Feng Zhang; Benhua Zeng; Wenxia Li; Feiyan Yan; Yufeng Zhao; Xiaoyan Pang; Xiaojun Zhang; Huaqing Fu; Feng Chen; Naisi Zhao; Bruce R. Hamaker; Laura C. Bridgewater; David Weinkove; Karine Clément; Joël Doré

Gut microbiota has been implicated as a pivotal contributing factor in diet-related obesity; however, its role in development of disease phenotypes in human genetic obesity such as Prader–Willi syndrome (PWS) remains elusive. In this hospitalized intervention trial with PWS (n = 17) and simple obesity (n = 21) children, a diet rich in non-digestible carbohydrates induced significant weight loss and concomitant structural changes of the gut microbiota together with reduction of serum antigen load and alleviation of inflammation. Co-abundance network analysis of 161 prevalent bacterial draft genomes assembled directly from metagenomic datasets showed relative increase of functional genome groups for acetate production from carbohydrates fermentation. NMR-based metabolomic profiling of urine showed diet-induced overall changes of host metabotypes and identified significantly reduced trimethylamine N-oxide and indoxyl sulfate, host-bacteria co-metabolites known to induce metabolic deteriorations. Specific bacterial genomes that were correlated with urine levels of these detrimental co-metabolites were found to encode enzyme genes for production of their precursors by fermentation of choline or tryptophan in the gut. When transplanted into germ-free mice, the pre-intervention gut microbiota induced higher inflammation and larger adipocytes compared with the post-intervention microbiota from the same volunteer. Our multi-omics-based systems analysis indicates a significant etiological contribution of dysbiotic gut microbiota to both genetic and simple obesity in children, implicating a potentially effective target for alleviation. Research in context Poorly managed diet and genetic mutations are the two primary driving forces behind the devastating epidemic of obesity-related diseases. Lack of understanding of the molecular chain of causation between the driving forces and the disease endpoints retards progress in prevention and treatment of the diseases. We found that children genetically obese with Prader–Willi syndrome shared a similar dysbiosis in their gut microbiota with those having diet-related obesity. A diet rich in non-digestible but fermentable carbohydrates significantly promoted beneficial groups of bacteria and reduced toxin-producers, which contributes to the alleviation of metabolic deteriorations in obesity regardless of the primary driving forces.

Collaboration


Dive into the Xiaoyan Pang's collaboration.

Top Co-Authors

Avatar

Liping Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Menghui Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Linghua Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Chenhong Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yufeng Zhao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jian Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xu Zhang

Tianjin Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhengsheng Xue

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hua Wei

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge