Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoyan Tao is active.

Publication


Featured researches published by Xiaoyan Tao.


BMC Infectious Diseases | 2009

Epidemiological investigations of human rabies in China

Miao Song; Qing Tang; Dingming Wang; Zhao-Jun Mo; Shou-Heng Guo; Hao Li; Xiaoyan Tao; Charles E. Rupprecht; Zi-Jian Feng; Guodong Liang

BackgroundThe epidemic of rabies showed a rising trend in China in recent years. To identify the potential factors involved in the emergence, we investigated and analyzed the status and characteristics of human rabies between 1996 and 2008. Moreover, the status of rabies infection and vaccination in dogs, and prophylaxis of humans after rabies exposure were analyzed.MethodsHuman rabies data in China between 1996 and 2008 collected from the annual reports of Chinese Center for Disease Control and Prevention (China CDC) were analyzed. To investigate the status of dogs and postexposure prophylaxis (PEP) of humans, brain specimens of domestic dogs were collected and detected, and the demographic details, exposure status and PEP of rabies patients were obtained in 2005 and 2006 in Guangxi, Hunan and Guizhou provinces.ResultsThe results showed 19,806 human rabies cases were reported in China from 1996 to 2008, with an average of 1,524 cases each year, and the incidence almost was rising rapidly, with the peak in 2007 (3,300 cases). It was notable that nearly 50% of the total rabies cases nationwide were reported in Guangxi, Hunan and Guizhou provinces. In these three provinces, the rabies infection rate in dogs was 2.3%, and 60% investigated cities had a dog vaccination rate of below 70%; among the 315 recorded human cases, 66.3% did not receive any PEP at all, 27.6% received inadequate PEP, and only 6.0% received a full regime of PEP.ConclusionsIn recent years, rabies is reemerging and becoming a major public-health problem in China. Our analysis showed that unsuccessful control of dog rabies and inadequate PEP of patients were the main factors leading to the high incidence of human rabies in China, then there are following suggestions: (1) Strict control of free-ranging dogs and mandatory rabies vaccination should be enforced. (2)Establishing national animal rabies surveillance network is imperative. (3) PEP should be decided to initiate or withhold according to postmortem diagnosis of the biting animal. (4) The cost of PEP should be decreased or free, especially in rural areas. (5)Education of the public and health care staff should be enhanced.


Emerging Infectious Diseases | 2009

Molecular Epidemiology of Rabies in Southern People’s Republic of China

Xiaoyan Tao; Qing Tang; Hao Li; Zhao-Jun Mo; Hong Zhang; Dingming Wang; Qiang Zhang; Miao Song; Andres Velasco-Villa; Xianfu Wu; Charles E. Rupprecht; Guodong Liang

Migration and transport of dogs may have caused recent epidemics of human rabies.


Infection, Genetics and Evolution | 2015

Dengue is still an imported disease in China: A case study in Guangzhou

Shaowei Sang; Bin Chen; Haixia Wu; Zhicong Yang; Biao Di; Lihua Wang; Xiaoyan Tao; Xiaobo Liu; Qiyong Liu

Dengue virus and its four serotypes (DENV 1-4) infect approximately 390 million people worldwide each year, with most cases in tropical and subtropical regions. Because of repeated introduction of DENV from epidemic regions and suitable weather conditions, many regions have shifted from hypo-endemicity to hyper-endemicity over recent decades. Since the first dengue outbreak in 1978, it is crucial to understand the current situation in China over nearly 40 years. The purpose of the study was to examine whether dengue in China was endemic or not, which is essential for relevant dengue control and prevention strategy implementation in China. The study, combining epidemiological characteristics of dengue from the disease notification system, phylogenetic and phylogeographic analyses, showed that all four serotypes had been detected in Guangzhou, China, which was dominated by DENV 1-2. The Maximum Likelihood tree analytic results showed that the virus detected in Guangzhou localized in different clades, except of virus of 2002 and 2003 clustered together. There existed the mutual introductions between Guangzhou and Southeast Asia. Most of the viruses were imported from Southeast Asia and the sources of outbreaks in Guangzhou mainly originated from Thailand, Indonesia, and the Philippines. The study indicates that dengue in China still remains as an imported disease, with the possibility of localization.


PLOS Neglected Tropical Diseases | 2012

The spatial and temporal dynamics of rabies in China

Jinning Yu; Hao Li; Qing Tang; Simon Rayner; Na Han; Zhenyang Guo; Haizhou Liu; James Adams; Wei Fang; Xiaoyan Tao; Shumei Wang; Guodong Liang

Background and Objectives Recent years have seen a rapid increase in the number of rabies cases in China and an expansion in the geographic distribution of the virus. In spite of the seriousness of the outbreak and increasing number of fatalities, little is known about the phylogeography of the disease in China. In this study, we report an analysis of a set of Nucleocapsid sequences consisting of samples collected through the trial Chinese National Surveillance System as well as publicly available sequences. This sequence set represents the most comprehensive dataset from China to date, comprising 210 sequences (including 57 new samples) from 15 provinces and covering all epidemic regions. Using this dataset we investigated genetic diversity, patterns of distribution, and evolutionary history. Results Our analysis indicates that the rabies virus in China is primarily defined by two clades that exhibit distinct population subdivision and translocation patterns and that contributed to the epidemic in different ways. The younger clade originated around 1992 and has properties that closely match the observed spread of the recent epidemic. The older clade originated around 1960 and has a dispersion pattern that suggests it represents a strain associated with a previous outbreak that remained at low levels throughout the country and reemerged in the current epidemic. Conclusions Our findings provide new insight into factors associated with the recent epidemic and are relevant to determining an effective policy for controlling the virus.


Virologica Sinica | 2012

Analysis on Factors Related to Rabies Epidemic in China from 2007-2011*

Cui-Ping Yin; Hang Zhou; Hui Wu; Xiaoyan Tao; Simon Rayner; Shumei Wang; Qing Tang; Guodong Liang

To analyze features of the rabies epidemic in China between 2007 and 2011, identify factors influencing the epidemic and to provide a scientific basis for further control and prevention of rabies, Descriptive epidemiological methods and statistical analysis was used on data collected from the National Disease Reporting Information System between 2007 to 2011 and the National Active Surveillance System between 2007 and 2010. Our analysis shows that while the number of human rabies cases decreased year by year, the number of districts reporting cases did not show significant change. The situations in Guangdong, Guangxi, Guizhou and Hunan provinces clearly improved over the period but they remain provinces with high-incidence, and consequently influence the epidemic situation of surrounding provinces and possibly the whole country. Summer and autumn were high-incidence seasons. Farmers, students and pre-school children represent the high-risk populations, and rates of cases in farmers increased, those for students decreased, and pre-school children remained unchanged. Provinces with active surveillance programs reported a total of 2346 individual cases, of which 88.53% were associated with canines. Postexposure prophylaxis (PEP) of rabies cases was not significantly improved, whereas PEP in post-exposure population was good. In rural regions of China, canine density was reduced somewhat, and the immunization rate increased slightly. Finally we show that while the epidemic decreased 2007 to 2011 in China, cases continued to be diffused in certain regions. Lack of standardization of PEP on rabies cases was the main reason of morbidity. The high density and low immunization of dog in rural areas and the defective situation of PEP are still continuous occurrences in China and remain a cause for concern.


Virus Research | 2009

Molecular characterization of the complete genome of a street rabies virus isolated in China.

Pinggang Ming; Jialiang Du; Qing Tang; Jiaxin Yan; Susan A. Nadin-Davis; Hao Li; Xiaoyan Tao; Ying Huang; Rongliang Hu; Guodong Liang

In this study, the complete genomic sequence of a rabies virus isolate HN10, recovered from brain tissue of a rabid patient in China, was determined. This is the first Chinese street isolate that has been fully characterized. The overall organization of this virus is typical of that observed for all other rabies viruses. Alignments of amino acid sequences of the phosphoprotein, glycoprotein and large protein of HN10 with those of other rabies viruses were used to examine the extent of conservation of known functional regions. Phylogenetic analysis using either the complete or partial genomic sequence of HN10 determined that this isolate is most closely associated with viruses previously shown to circulate in Guangxi and Hunan provinces. In addition, of all vaccine strains used for comparison, the attenuated Chinese vaccine strain CTN181 is most closely related to HN10.


PLOS Neglected Tropical Diseases | 2013

National Borders Effectively Halt the Spread of Rabies: The Current Rabies Epidemic in China Is Dislocated from Cases in Neighboring Countries

Zhenyang Guo; Xiaoyan Tao; Cui-Ping Yin; Na Han; Jinning Yu; Hao Li; Haizhou Liu; Wei Fang; James Adams; Jun Wang; Guodong Liang; Qing Tang; Simon Rayner

China has seen a massive resurgence of rabies cases in the last 15 years with more than 25,000 human fatalities. Initial cases were reported in the southwest but are now reported in almost every province. There have been several phylogenetic investigations into the origin and spread of the virus within China but few reports investigating the impact of the epidemic on neighboring countries. We therefore collected nucleoprotein sequences from China and South East Asia and investigated their phylogenetic and phylogeographic relationship. Our results indicate that within South East Asia, isolates mainly cluster according to their geographic origin. We found evidence of sporadic exchange of strains between neighboring countries, but it appears that the major strain responsible for the current Chinese epidemic has not been exported. This suggests that national geographical boundaries and border controls are effective at halting the spread of rabies from China into adjacent regions. We further investigated the geographic structure of Chinese sequences and found that the current epidemic is dominated by variant strains that were likely present at low levels in previous domestic epidemics. We also identified epidemiological linkages between high incidence provinces consistent with observations based on surveillance data from human rabies cases.


PLOS Neglected Tropical Diseases | 2013

Molecular phylodynamic analysis indicates lineage displacement occurred in Chinese rabies epidemics between 1949 to 2010.

Xiaoyan Tao; Qing Tang; Simon Rayner; Zhenyang Guo; Hao Li; Shu-Lin Lang; Cui-Ping Yin; Na Han; Wei Fang; James Adams; Miao Song; Guodong Liang

Rabies remains a serious problem in China with three epidemics since 1949 and the country in the midst of the third epidemic. Significantly, the control of each outbreak has been followed by a rapid reemergence of the disease. In 2005, the government implemented a rabies national surveillance program that included the collection and screening of almost 8,000 samples. In this work, we analyzed a Chinese dataset comprising 320 glycoprotein sequences covering 23 provinces and eight species, spanning the second and third epidemics. Specifically, we investigated whether the three epidemics are associated with a single reemerging lineage or a different lineage was responsible for each epidemic. Consistent with previous results, phylogenetic analysis identified six lineages, China I to VI. Analysis of the geographical composition of these lineages revealed they are consistent with human case data and reflect the gradual emergence of China I in the third epidemic. Initially, China I was restricted to south China and China II was dominant. However, as the epidemic began to spread into new areas, China I began to emerge, whereas China II remained confined to south China. By the latter part of the surveillance period, almost all isolates were China I and contributions from the remaining lineages were minimal. The prevalence of China II in the early stages of the third epidemic and its established presence in wildlife suggests that it too replaced a previously dominant lineage during the second epidemic. This lineage replacement may be a consequence of control programs that were dominated by dog culling efforts as the primary control method in the first two epidemics. This had the effect of reducing dominant strains to levels comparable with other localized background stains. Our results indicate the importance of effective control strategies for long term control of the disease.


BMC Infectious Diseases | 2014

Human rabies surveillance and control in China, 2005–2012

Miao Song; Qing Tang; Simon Rayner; Xiaoyan Tao; Hao Li; Zhenyang Guo; Xinxin Shen; Wentao Jiao; Wei Fang; Jun Wang; Guodong Liang

BackgroundRabies reemerged in China during the 1990s with a gradual increase in the number and geographical dispersion of cases. As a consequence, a national surveillance program was introduced in 2005 to investigate the outbreak in terms of vaccination coverage, PEP treatment, and geographical and social composition.MethodsThe surveillance program was coordinated at the national level by the Chinese Center for Disease Control (CCDC) with data collected by regional health centres and provincial CCDCs, and from other official sources. Various statistical and multivariate analysis techniques were then used to evaluate the role and significance of implemented policies and strategies related to rabies prevention and control over this period.ResultsFrom 2005–2012, 19,221 cases were reported across 30 provinces, but these primarily occurred in rural areas of southern and eastern China, and were predominantly associated with farmers, students and preschool children. In particular, detailed analysis of fatalities reported from 2010 to 2011 shows they were associated with very low rates of post exposure treatment compared to the cases with standard PEP. Nevertheless, regulation of post-exposure prophylaxis quality, together with improved management and vaccination of domesticated animals, has improved prevention and control of rabies.ConclusionsThe various control policies implemented by the government has played a key role in reducing rabies incidences in China. However, level of PEP treatment varies according to sex, age, degree and site of exposure, as well as the source of infection. Regulation of PEP quality together with improved management and vaccination of domesticated animals have also helped to improve prevention and control of rabies.


Journal of Virology | 2014

Comparison of Genotypes I and III in Japanese Encephalitis Virus Reveals Distinct Differences in Their Genetic and Host Diversity

Na Han; James Adams; Ping Chen; Zhenyang Guo; Xiangfu Zhong; Wei Fang; Na Li; Lei Wen; Xiaoyan Tao; Zhiming Yuan; Simon Rayner

ABSTRACT Japanese encephalitis (JE) is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been phylogenetically divided into five genotypes. Recent surveillance data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. To investigate the mechanism behind the genotype shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination, we collected (i) all full-length and partial JEV molecular sequences and (ii) associated genotype and host information comprising a data set of 873 sequences. We then examined differences between the two genotypes at the genetic and epidemiological level by investigating amino acid mutations, positive selection, and host range. IMPORTANCE We found that although GI is dominant, it has fewer sites predicted to be under positive selection, a narrower host range, and significantly fewer human isolates. For the E protein, the sites under positive selection define a haplotype set for each genotype that shows striking differences in their composition and diversity, with GIII showing significantly more variety than GI. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but is also more restricted in its host range. Japanese encephalitis is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been divided into five genotypes based on sequence similarity. Recent data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. Understanding the reasons behind this shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination is important for controlling the spread of the virus and reducing human fatalities. We collected all available full-length and partial JEV molecular sequences and associated genotype and host information. We then examined differences between the two genotypes at the genetic and epidemiological levels by investigating amino acid mutations, positive selection, and host range. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but more restricted in host range.

Collaboration


Dive into the Xiaoyan Tao's collaboration.

Top Co-Authors

Avatar

Qing Tang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Guodong Liang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Hao Li

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Zhenyang Guo

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Simon Rayner

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Miao Song

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Na Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinxin Shen

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Cui-Ping Yin

Chinese Center for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge