Xiaoyang Guan
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Xiaoyang Guan.
Organic Letters | 2013
Xiaoyang Guan; Matthew R. Drake; Zhongping Tan
Human galanin-like peptide (hGALP) is a newly discovered hypothalamic peptide that plays important roles in the regulation of food intake and energy balance. Here, we demonstrate that the aspartic acid ligation can be employed to achieve an efficient synthesis of hGALP. The total synthesis of hGALP enhances our ability to study its biology and facilitates the development of more stable analogues.
Biochemistry | 2017
Patrick K. Chaffey; Xiaoyang Guan; Chao Chen; Yuan Ruan; Xinfeng Wang; Amy H. Tran; Theo N. Koelsch; Qiu Cui; Yingang Feng; Zhongping Tan
Protein glycosylation has been shown to have a variety of site-specific and glycan-specific effects, but so far, the molecular logic that leads to such observations has been elusive. Understanding the structural changes that occur and being able to correlate those with the physical properties of the glycopeptide are valuable steps toward being able to predict how specific glycosylation patterns will affect the stability of glycoproteins. By systematically comparing the structural features of the O-glycosylated carbohydrate-binding module of a Trichoderma reesei-derived Family 7 cellobiohydrolase, we were able to develop a better understanding of the influence of O-glycan structure on the molecules physical stability. Our results indicate that the previously observed stabilizing effects of O-glycans come from the introduction of new bonding interactions to the structure and increased rigidity, while the decreased stability seemed to result from the impaired interactions and increased conformational flexibility. This type of knowledge provides a powerful and potentially general mechanism for improving the stability of proteins through glycoengineering.
FEBS Journal | 2015
Renee M. Happs; Xiaoyang Guan; Michael G. Resch; Mark F. Davis; Gregg T. Beckham; Zhongping Tan; Michael F. Crowley
Family 1 carbohydrate‐binding modules (CBMs) are ubiquitous components of multimodular fungal enzymes that degrade plant cell wall polysaccharides and bind specifically to cellulose. Native glycosylation of family 1 CBMs has been shown to substantially impact multiple physical properties, including thermal and proteolytic stability and cellulose binding affinity. To gain molecular insights into the changes in CBM properties upon glycosylation, solution structures of two glycoforms of a Trichoderma reesei family 1 CBM were studied by NMR spectroscopy: a glycosylated family 1 CBM with a mannose group attached to both Thr1 and Ser3 and a second family 1 CBM with single mannose groups attached to Thr1, Ser3 and Ser14. The structures clearly reveal that monosaccharides at both Ser3 and Ser14 on family 1 CBMs present additional cellulose binding platforms, similar to well‐characterized aromatic residues at the binding interface, which align to the cellulose surface. These results are in agreement with previous experimental work demonstrating that glycans at Ser3 and Ser14 impart significant improvements in binding affinity. Additionally, detailed analysis of the NMR structures and molecular simulations indicates that the protein backbone of the CBM is not significantly altered by attachment of monosaccharides, and that the mannose attached to Ser14 may be more flexible than the mannose at Ser3. Overall, the present study reveals how family 1 CBM structures are affected by covalent attachment of monosaccharides, which are likely important post‐translational modifications of these common subdomains of fungal plant cell wall degrading enzymes.
Topics in Current Chemistry | 2014
Xiaoyang Guan; Patrick K. Chaffey; Chen Zeng; Zhongping Tan
Chemical protein synthesis is a useful tool to generate pure proteins which are otherwise difficult to obtain in sufficient amounts for structure and property analysis. Additionally, because of the precise and flexible nature of chemical synthesis, it allows for controllable variation of protein sequences, which is valuable for understanding the relationships between protein structure and function. Despite the usefulness of chemical protein synthesis, it has not been widely adopted as a tool for protein characterization, mainly because of the lack of general and efficient methods for the preparation and coupling of peptide fragments and for the folding of polypeptide chains. To address these issues, many new methods have recently been developed in the areas of solid-phase peptide synthesis, peptide fragment assembly, and protein folding. Here we review these recent technological advances and highlight the gaps needing to be addressed in future research.
Biochemistry | 2017
Patrick K. Chaffey; Xiaoyang Guan; Xinfeng Wang; Yuan Ruan; Yaohao Li; Suzannah G. Miller; Amy H. Tran; Theo N. Koelsch; Lomax F. Pass; Zhongping Tan
Protein O-glycosylation is a diverse, common, and important post-translational modification of both proteins inside the cell and those that are secreted or membrane-bound. Much work has shown that O-glycosylation can alter the structure, function, and physical properties of the proteins to which it is attached. One gap remaining in our understanding of O-glycoproteins is how O-glycans might affect the folding of proteins. Here, we took advantage of synthetic, homogeneous O-glycopeptides to show that certain glycosylation patterns have an intrinsic effect, independent of any cellular folding machinery, on the folding pathway of a model O-glycoprotein, a carbohydrate binding module (CBM) derived from the Trichoderma reesei cellulase TrCel7A. The strongest effect, a 6-fold increase in overall folding rate, was observed when a single O-mannose was the glycan, and the glycosylation site was near the N-terminus of the peptide sequence. We were also able to show that glycosylation patterns affected the kinetics of each step in unique ways, which may help to explain the observations made here. This work is a first step toward quantitative understanding of how O-glycosylation might control, through intrinsic means, the folding of O-glycoproteins. Such an understanding is expected to facilitate future investigations into the effects of glycosylation on more biological processes related to protein folding.
Biochemistry | 2018
Patrick K. Chaffey; Xiaoyang Guan; Yaohao Li; Zhongping Tan
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylations importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Biochemistry | 2018
Xiaoyang Guan; Patrick K. Chaffey; Huan Chen; Wei Feng; Xiuli Wei; Liu-Meng Yang; Yuan Ruan; Xinfeng Wang; Yaohao Li; Kimberly B. Barosh; Amy H. Tran; Jaimie Zhu; Wei Liang; Yong-Tang Zheng; Xu Wang; Zhongping Tan
Many human proteins have the potential to be developed as therapeutic agents. However, side effects caused by direct administration of natural proteins have significantly slowed expansion of protein therapeutics into the clinic. Post-translational modifications (PTMs) can improve protein properties, but because of significant knowledge gaps, we are considerably limited in our ability to apply PTMs to generate better protein therapeutics. Here, we seek to fill the gaps by studying the PTMs of a small representative chemotactic cytokine, RANTES. RANTES can inhibit HIV-1 infection by competing with it for binding to receptor CCR5 and stimulating CCR5 endocytosis. Unfortunately, RANTES can induce strong signaling, leading to severe inflammatory side effects. We apply a chemical biology approach to explore the potential of post-translationally modified RANTES as safe inhibitors of HIV-1 infection. We synthesized and systematically tested a library of RANTES isoforms for their ability to inhibit inflammatory signaling and prevent HIV-1 infection of primary human cells. Through this research, we revealed that most of the glycosylated variants have decreased inflammation-associated properties and identified one particular glyco variant, a truncated RANTES containing a Galβ1-3GalNAc disaccharide α-linked to Ser4, which stands out as having the best overall properties: relatively high HIV-1 inhibition potency but also weak inflammatory properties. Moreover, our results provided a structural basis for the observed changes in the properties of RANTES. Taken together, this work highlights the potential importance of glycosylation as an alternative strategy for developing CCR5 inhibitors to treat HIV-1 infection and, more generally, for reducing or eliminating unwanted properties of therapeutic proteins.
Archive | 2017
Patrick K. Chaffey; Xiaoyang Guan; Lai-Xi Wang; Zhongping Tan
This chapter is meant to serve as an introduction to the remainder of the book by providing general background on the chemical biology of glycoproteins as well as a brief review of the chapters that follow. The purpose here is to introduce some basic concepts common to many forms of glycosylation for those readers who may be unfamiliar with the field. We begin with a discussion of the strategies and methods used to study protein glycosylation. During the overview, an effort is made to highlight a few relevant aspects of chemical glycobiology, including glycoprotein biosynthesis and a brief description of the synthesis and function of glycoproteins. Finally, we have a summary of the contributions from chemical biology over the years. It is our hope that, after reading this introductory chapter, the reader will have a broad view of the chemical glycobiology field as it currently stands and a deeper appreciation for some of the unique ideas that chemical biology brings to the field.
Biochemistry | 2017
Marissa A. McKercher; Xiaoyang Guan; Zhongping Tan; Deborah S. Wuttke
SH2 domains recognize phosphotyrosine (pY)-containing peptide ligands and play key roles in the regulation of receptor tyrosine kinase pathways. Each SH2 domain has individualized specificity, encoded in the amino acids neighboring the pY, for defined targets that convey their distinct functions. The C-terminal SH2 domain (PLCC) of the phospholipase C-γ1 full-length protein (PLCγ1) typically binds peptides containing small and hydrophobic amino acids adjacent to the pY, including a peptide derived from platelet-derived growth factor receptor B (PDGFRB) and an intraprotein recognition site (Y783 of PLCγ1) involved in the regulation of the proteins lipase activity. Remarkably, PLCC also recognizes unexpected peptides containing amino acids with polar or bulky side chains that deviate from this pattern. This versatility in recognition specificity may allow PLCγ1 to participate in diverse, previously unrecognized, signaling pathways in response to binding chemically dissimilar partners. We have used structural approaches, including nuclear magnetic resonance and X-ray crystallography, to elucidate the mechanisms of noncognate peptide binding to PLCC by ligands derived from receptor tyrosine kinase ErbB2 and from the insulin receptor. The high-resolution peptide-bound structures reveal that PLCC has a relatively static backbone but contains a chemically rich protein surface comprised of a combination of hydrophobic pockets and amino acids with charged side chains. We demonstrate that this expansive and chemically diverse PLCC interface, in addition to peptide conformational plasticity, permits PLCC to recognize specific noncognate peptide ligands with multimodal specificity.
ACS Chemical Biology | 2017
Xiaoyang Guan; Patrick K. Chaffey; Xiuli Wei; Daniel R. Gulbranson; Yuan Ruan; Xinfeng Wang; Yaohao Li; Yan Ouyang; Liqun Chen; Chen Zeng; Theo N. Koelsch; Amy H. Tran; Wei Liang; Jingshi Shen; Zhongping Tan
Diabetes is a leading cause of death worldwide and results in over 3 million annual deaths. While insulin manages the disease well, many patients fail to comply with injection schedules, and despite significant investment, a more convenient oral formulation of insulin is still unavailable. Studies suggest that glycosylation may stabilize peptides for oral delivery, but the demanding production of homogeneously glycosylated peptides has hampered transition into the clinic. We report here the first total synthesis of homogeneously glycosylated insulin. After characterizing a series of insulin glycoforms with systematically varied O-glycosylation sites and structures, we demonstrate that O-mannosylation of insulin B-chain Thr27 reduces the peptides susceptibility to proteases and self-association, both critical properties for oral dosing, while maintaining full activity. This work illustrates the promise of glycosylation as a general mechanism for regulating peptide activity and expanding its therapeutic use.