Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoyao Ma is active.

Publication


Featured researches published by Xiaoyao Ma.


Allergy | 2015

PDK1/Akt/PDE4D axis identified as a target for asthma remedy synergistic with β2 AR agonists by a natural agent arctigenin.

Runping Fang; Qingxin Cui; Jixue Sun; Xixi Duan; Xiaoyao Ma; Weiya Wang; Binfeng Cheng; Yang Liu; Yuanyuan Hou; Gang Bai

Asthma is a heterogenetic disorder characterized by chronic inflammation with variable airflow obstruction and airway hyper‐responsiveness. As the most potent and popular bronchodilators, β2 adrenergic receptor (β2AR) agonists bind to the β2ARs that are coupled via a stimulatory G protein to adenylyl cyclase, thereby improving cAMP accumulation and resulting in airway smooth muscle relaxation. We previously demonstrated arctigenin had a synergistic function with the β2AR agonist, but the target for this remained elusive.


Acta Pharmaceutica Sinica B | 2016

Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways

Yuanyuan Hou; Yan Nie; Binfeng Cheng; Jin Tao; Xiaoyao Ma; Min Jiang; Jie Gao; Gang Bai

Abstract Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.


Molecular Nutrition & Food Research | 2017

Ursolic Acid, A Natural Nutraceutical Agent, Targets Caspase3 and Alleviates Inflammation-Associated Downstream Signal Transduction

Xiaoyao Ma; Yuan Zhang; Zengyong Wang; Yunbing Shen; Man Zhang; Quandeng Nie; Yuanyuan Hou; Gang Bai

Scope Ursolic acid (UA) is a pentacyclicterpenoid carboxylic acid that is present in a wide variety of plant foods. There are many beneficial health effects that are attributed to the properties of UA. However, the specific cellular targets of UA and the mechanism underlying downstream signal transduction processes linked to the anti‐inflammation pathway have not been thoroughly elucidated to date. Methods and results Chemical biology strategies such as target fishing, click reaction synthesis of a UA probe and molecular imaging were used to identify potential target proteins of UA. Cysteinyl aspartate specific proteinase 3 (CASP3) and its downstream signaling pathway were verified as potential targets by molecular docking, intracellular enzyme activity evaluation and accurate pathway analysis. The results indicated that UA acted on CASP3, ERK1 and JNK2 targets, alleviated inflammation‐associated downstream multiple signal transduction factors, including ERK1, NF‐κB and STAT3, and exhibited anti‐inflammation activities. Conclusion As a natural dietary supplement, UA demonstrated anti‐inflammation activity via inhibition of CASP3 and shows the potential to improve the therapy effect of several inflammation‐associated diseases.


Evidence-based Complementary and Alternative Medicine | 2016

Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice

Jin Tao; Yan Nie; Yuanyuan Hou; Xiaoyao Ma; Guoyu Ding; Jie Gao; Min Jiang; Gang Bai

Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for “clearing heat and relieving toxicity” and its ability to “diffuse the lung and relieve sore throat.” However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI.


Journal of Chromatography B | 2017

Comparison and evaluation of antimuscarinic and anti-inflammatory effects of five Bulbus fritillariae species based on UPLC-Q/TOF integrated dual-luciferase reporter assay, PCA and ANN analysis.

Mengge Zhou; Xiaoyao Ma; Guoyu Ding; Zengyong Wang; Dan Liu; Yongling Tong; Hong Zhou; Jie Gao; Yuanyuan Hou; Min Jiang; Gang Bai

Many species of Bulbus fritillariae are used as traditional medicines for thousands of years; however, their application is not standardized. To clarify the differences and homologies, the antimuscarinic and anti-inflammatory effects of five BM species were firstly tested and compared at cellular level. With an integrated strategy combining UPLC-Q/TOF MS, PCA and ANN analysis, the active ingredients among 28 different chemical markers were predicted and identified. SB and QB extracts showed the best antimuscarinic effects and several steroidal alkaloids, such as solanidine, contributed to this effects. However, ZB was superior to reduce the inflammatory response. Another five components were responsible by decreasing the expression of NF-κB, including puqiedine, zhepeiresinol, 2-monopalmitin, N-demethylpuqietinone, and isoverticine. More novelty, a new cluster of five BM species based on active ingredients as potential quality markers was depicted to illustrate their functions. These results of the study could make a reference for the medicinal application of BM species in clinic; and the integrated strategy provided an effective method to obtain the quality markers from medical herbs, which was helpful for the quality control of traditional medicinal products.


Journal of Nanobiotechnology | 2017

Biodistribution of arctigenin-loaded nanoparticles designed for multimodal imaging

Qingxin Cui; Yuanyuan Hou; Yanan Wang; Xu Li; Yang Liu; Xiaoyao Ma; Zengyong Wang; Weiya Wang; Jin Tao; Qian Wang; Min Jiang; Dongyan Chen; Xizeng Feng; Gang Bai

BackgroundTracking targets of natural products is one of the most challenging issues in fields ranging from pharmacognosy to biomedicine. It is widely recognized that the biocompatible nanoparticle (NP) could function as a “key” that opens the target “lock”.ResultsWe report a functionalized poly-lysine NP technique that can monitor the target protein of arctigenin (ATG) in vivo non-invasively. The NPs were synthesized, and their morphologies and surface chemical properties were characterized by transmission electron microscopy (TEM), laser particle size analysis and atomic force microscopy (AFM). In addition, we studied the localization of ATG at the level of the cell and the whole animal (zebrafish and mice). We demonstrated that fluorescent NPs could be ideal carriers in the development of a feasible method for target identification. The distributions of the target proteins were found to be consistent with the pharmacological action of ATG at the cellular and whole-organism levels.ConclusionsThe results indicated that functionalized poly-lysine NPs could be valuable in the multimodal imaging of arctigenin.


Analytical and Bioanalytical Chemistry | 2017

Active fragments-guided drug discovery and design of selective tropane alkaloids using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry coupled with virtual calculation and biological evaluation

Mengge Zhou; Xiaoyao Ma; Jixue Sun; Guoyu Ding; Qingxin Cui; Yan Miao; Yuanyuan Hou; Min Jiang; Gang Bai

AbstractTropane alkaloids (TAs), rich in the plant of Physochlaina infundibularis Kuang, which is named Huashanshen (HSS) in China, showed good effects on types of spasms. However, no data were collected to explore the relationship between the specificity for muscarinic receptor subtypes and the structures of these TAs. To address this issue, an extracted ion chromatogram (EIC) strategy using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) based on the fragmentation behavior of the TA standards was established to rapidly capture the varied TAs from HSS. Based on the provided structural information of diagnostic ions or neutral loss, 29 TAs were efficiently profiled, especially some trace ingredients. In additional, via virtual validation combined with molecular dynamic simulation, approximately a dozen alkaloids were found with high selectivity for muscarinic receptors. In additional, N-acetyl convolicine was chosen for selectivity evaluation of M2 or M3 receptors through the use of a dual-luciferase reporter assay system at the cellular level and an ACh-induced constricted strip test in vitro. After summarizing the active fragments and the structure-activity relationship (SAR) information, a new modified TA that takes advantage of both the high affinity and high selectivity for M3 receptors was proposed and evaluated successfully. This study provided an effective approach for the discovery and design of natural products based on highly selective drugs by UPLC-Q/TOF-MS coupled with virtual calculation and biological evaluation. Graphical AbstractActive fragments-guided strategy for selective inhibitors from HSS


Biomedical Chromatography | 2016

Screening and identification of Caulis Sinomenii bioactive ingredients with dual‐target NF‐κB inhibition and β2‐AR agonizing activities

Dan Sun; Yanqi Han; Weiya Wang; Zengyong Wang; Xiaoyao Ma; Yuanyuan Hou; Gang Bai

Caulis Sinomenii (CS) is a valuable traditional medicine in China. Its extract can act as an anti-inflammatory agent and a vascular smooth muscle relaxant. However, the underlying mechanisms remain unknown. In this study, we developed a simple dual-target method based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry combined with a dual-target bioactive screening assay for anti-inflammatory and antispasmodic activities to characterize the chemical structure of various bioactive compounds of CS rapidly. Seven potential NF-κB inhibitors were identified, including laudanosoline-1-O-xylopyranose, 6-O-methyl-laudanosoline-1-O-glucopyranoside, menisperine, sinomenine, laurifoline, magnoflorine and norsinoacutin. Furthermore, IL-6 and IL-8 assays confirmed the anti-inflammatory effects of these potential NF-κB inhibitors, in which laudanosoline-1-O-d-xylopyranose and menisperine were revealed as novel NF-κB inhibitors. Among the seven identified alkaloids, three potential β2 -adrenergic receptor agonists, including sinomenine, magnoflorine and laurifoline, were characterized using a luciferase reporter system to measure for the activity of β2 -adrenergic receptor agonists. Finally, sinomenine, magnoflorine and laurifoline were identified not only as potential NF-κB inhibitors but also as potential β2 -adrenegic receptor agonists, which is the first time this has been reported. Molecular dynamic simulation and docking results suggest that the three dual-bioactive constituents could not only inhibit Pseudomonas aeruginosa PAK strain-induced inflammatory responses via a negative regulation of the Braf protein that participates in MAPK signaling pathway but also activate the β2 -adrenegic receptor. These results suggest that CS extract has dual signaling activities with potential clinical application as a novel drug for asthma.


Phytomedicine | 2017

Mahuannin B an adenylate cyclase inhibitor attenuates hyperhidrosis via suppressing β2-adrenoceptor/cAMP signaling pathway

Zengyong Wang; Yu Cui; Guoyu Ding; Mengge Zhou; Xiaoyao Ma; Yuanyuan Hou; Min Jiang; Dailin Liu; Gang Bai

BACKGROUND Based on the traditional application of traditional Chinese Medicines (TCMs), Ephedra Herba (EH) is used to cure cold fever by inducing sweating, whereas Ephedra Radix (ER) is used to treat hyperhidrosis. Although they come from the same plant, Ephedra sinica Stapf, but have play opposing roles in clinical applications. EH is known to contain ephedrine alkaloids, which is the driver of the physiological changes in sweating, heart rate and blood pressure. However, the active pharmacological ingredients (APIs) of ER and the mechanisms by which it restricts sweating remain unknown. PURPOSE The current work aims to discover the hidroschesis APIs from ER, as well as to establish its action mechanism. METHODS UPLC-Q/TOF-MS, PCA, and heat map were utilized for identifying the differences between EH and ER. HPLC integrated with a β2-adrenoceptor (β2-AR) activity luciferase reporter assay system was used to screen active inhibitors; molecular docking and a series of biological assays centered on β2-AR-related signaling pathways were evaluated to understand the roles of APIs. RESULTS The opposite effect on sweating of EH and ER can be attributed to the APIs of amphetamine-type alkaloids and flavonoid derivatives. Mahuannin B is an effective anti-hydrotic agent, inhibiting the production of cAMP via suppression of adenylate cyclase (AC) activity. CONCLUSION The effects of EH and ER on sweat and β2-AR-related signaling pathway are opposite due to different alkaloids and flavonoids of APIs in EH and ER. The present work not only sheds light on the hidroschesis action of mahuannin B, but also presents a potential target of AC in the treatment of hyperhidrosis.


RSC Advances | 2017

Phillygenin attenuates inflammatory responses and influences glucose metabolic parameters by inhibiting Akt activity

Wenjuan Liu; Guangcui Chu; Nianwei Chang; Xiaoyao Ma; Min Jiang; Gang Bai

Phillygenin (Phi) is one of the main chemical constituents of the fruit of Forsythia suspensa (Thunb.) Vahl. It has various bioactivities, including anti-inflammatory, anti-obesity and antipyretic activities. However, its exact targets and molecular mechanism are still poorly understood. Bioinformatics tools were used to explore the potential targets of Phi, and 8 predicted targets, 4 primary pathways (MAPK, PI3K-Akt, T-cell receptor and m-TOR signaling pathway) related to the inflammatory response, and Akt as an important node was mentioned. Moreover, a Phi alkylated molecular probe was synthesized and used to capture the target proteins Akt. Then Akt and its downstream signaling pathway were verified by molecular docking, intracellular enzyme activity evaluation, and accurate pathway analysis. The results indicated that Phi targets an allosteric inhibit pocket on Akt; reduces Akt phosphorylation; alleviates multiple inflammatory-associated downstream signal transduction pathways, including IKKα/β and NF-κB; and influences glucose metabolic parameters associated with the downstream GSK3β protein and glucose uptake. The results suggest that Phi could reduce inflammatory responses and influence glucose metabolic parameters by inhibiting Akt phosphorylation. Moreover, these findings suggest a potential application for Phi in respiratory and metabolic diseases therapy.

Collaboration


Dive into the Xiaoyao Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge