Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoying Jian is active.

Publication


Featured researches published by Xiaoying Jian.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Small-molecule synergist of the Wnt/β-catenin signaling pathway

Qisheng Zhang; Michael B. Major; Shinichi Takanashi; Nathan D. Camp; Naoyuki Nishiya; Eric C. Peters; Mark H. Ginsberg; Xiaoying Jian; Paul A. Randazzo; Peter G. Schultz; Randall T. Moon; Sheng Ding

The Wnt/β-catenin signaling pathway regulates cell fate and behavior during embryogenesis, adult tissue homeostasis, and regeneration. When inappropriately activated, the pathway has been linked to colorectal cancer and melanoma, and when attenuated it may contribute to Alzheimers disease and osteoporosis. Small molecules that modulate Wnt signaling will likely provide new insights into the regulation of this key developmental pathway and ultimately provide pharmacological agents to control Wnt signaling in vivo. To this end, we screened a library of 100,000 small molecules for activity in a cell-based assay of Wnt/β-catenin signaling and discovered a purine derivative, QS11, that synergizes with Wnt-3a ligand in the activation of Wnt/β-catenin signal transduction. Through affinity chromatography and subsequent functional assays, we showed that QS11 binds and inhibits the GTPase activating protein of ADP-ribosylation factor 1 (ARFGAP1), suggesting that QS11 modulates Wnt/β-catenin signaling through an effect on protein trafficking. Consistent with its function as an ARFGAP inhibitor, QS11 inhibits migration of ARFGAP overexpressing breast cancer cells.


Current Biology | 2006

A BAR Domain in the N Terminus of the Arf GAP ASAP1 Affects Membrane Structure and Trafficking of Epidermal Growth Factor Receptor

Zhongzhen Nie; Dianne S. Hirsch; Ruibai Luo; Xiaoying Jian; Stacey Stauffer; Aida Cremesti; Josefa Andrade; Jacob Lebowitz; Michael Marino; Bijan Ahvazi; Jenny E. Hinshaw; Paul A. Randazzo

BACKGROUND Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. RESULTS ASAP1s N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. CONCLUSIONS The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.


Journal of Biological Chemistry | 2009

Autoinhibition of Arf GTPase-activating Protein Activity by the BAR Domain in ASAP1

Xiaoying Jian; Patrick O. Brown; Peter Schuck; James M. Gruschus; Andrea Balbo; Jenny E. Hinshaw; Paul A. Randazzo

ASAP1 is an Arf GTPase-activating protein (GAP) that functions on membrane surfaces to catalyze the hydrolysis of GTP bound to Arf. ASAP1 contains a tandem of BAR, pleckstrin homology (PH), and Arf GAP domains and contributes to the formation of invadopodia and podosomes. The PH domain interacts with the catalytic domain influencing both the catalytic and Michaelis constants. Tandem BAR-PH domains have been found to fold into a functional unit. The results of sedimentation velocity studies were consistent with predictions from homology models in which the BAR and PH domains of ASAP1 fold together. We set out to test the hypothesis that the BAR domain of ASAP1 affects GAP activity by interacting with the PH and/or Arf GAP domains. Recombinant proteins composed of the BAR, PH, Arf GAP, and Ankyrin repeat domains (called BAR-PZA) and the PH, Arf GAP, and Ankyrin repeat domains (PZA) were compared. Catalytic power for the two proteins was determined using large unilamellar vesicles as a reaction surface. The catalytic power of PZA was greater than that of BAR-PZA. The effect of the BAR domain was dependent on the N-terminal loop of the BAR domain and was not the consequence of differential membrane association or changes in large unilamellar vesicle curvature. The Km for BAR-PZA was greater and the kcat was smaller than for PZA determined by saturation kinetics. Analysis of single turnover kinetics revealed a transition state intermediate that was affected by the BAR domain. We conclude that BAR domains can affect enzymatic activity through intraprotein interactions.


Journal of Biological Chemistry | 2011

Phosphatidylinositol-4-phosphate 5-Kinase and GEP100/Brag2 Protein Mediate Antiangiogenic Signaling by Semaphorin 3E-Plexin-D1 through Arf6 Protein

Atsuko Sakurai; Xiaoying Jian; Charity J. Lee; Yosif Manavski; Emmanouil Chavakis; Julie G. Donaldson; Paul A. Randazzo; J. Silvio Gutkind

The semaphorins are a family of secreted or membrane-bound proteins that are known to guide axons in the developing nervous system. Genetic evidence revealed that a class III semaphorin, semaphorin 3E (Sema3E), and its receptor Plexin-D1 also control the vascular patterning during development. At the molecular level, we have recently shown that Sema3E acts on Plexin-D1 expressed in endothelial cells, thus initiating a novel antiangiogenic signaling pathway that results in the retraction of filopodia in endothelial tip cells. Sema3E induces the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix. This process requires the activation of small GTPase Arf6 (ADP-ribosylation factor 6), which regulates intracellular trafficking of β1 integrin. However, the molecular mechanisms by which Sema3E-Plexin-D1 activates Arf6 remained to be identified. Here we show that GEP100 (guanine nucleotide exchange protein 100)/Brag2, a guanine nucleotide exchange factor for Arf6, mediates Sema3E-induced Arf6 activation in endothelial cells. We provide evidence that upon activation by Sema3E, Plexin-D1 recruits phosphatidylinositol-4-phosphate 5-kinase, and its enzymatic lipid product, phosphatidylinositol 4,5-bisphosphate, binds to the pleckstrin homology domain of GEP100. Phosphatidylinositol 4,5-bisphosphate binding to GEP100 enhances its guanine nucleotide exchange factor activity toward Arf6, thus resulting in the disassembly of integrin-mediated focal adhesions and endothelial cell collapse. Our present study reveals a novel phospholipid-regulated antiangiogenic signaling pathway whereby Sema3E activates Arf6 through Plexin-D1 and consequently controls integrin-mediated endothelial cell attachment to the extracellular matrix and migration.


Traffic | 2010

Modifications to the C-terminus of Arf1 alter cell functions and protein interactions.

Xiaoying Jian; Margaret M. Cavenagh; James M. Gruschus; Paul A. Randazzo; Richard A. Kahn

Arf family proteins are ≈21‐kDa GTP‐binding proteins that are critical regulators of membrane traffic and the actin cytoskeleton. Studies examining the complex signaling pathways underlying Arf action have relied on recombinant proteins comprised of Arf fused to epitope tags or proteins, such as glutathione S‐transferase or green fluorescent protein, for both cell‐based mammalian cell studies and bacterially expressed recombinant proteins for biochemical assays. However, the effects of such protein fusions on the biochemical properties relevant to the cellular function have been only incompletely studied at best. Here, we have characterized the effect of C‐terminal tagging of Arf1 on (i) function in Saccharomyces cerevisiae, (ii) in vitro nucleotide exchange and (iii) interaction with guanine nucleotide exchange factors and GTPase‐activating proteins. We found that the tagged Arfs were substantially impaired or altered in each assay, compared with the wild‐type protein, and these changes are certain to alter actions in cells. We discuss the results related to the interpretation of experiments using these reagents and we propose that authors and editors consistently adopt a few simple rules for describing and discussing results obtained with Arf family members that can be readily applied to other proteins.


Journal of Biological Chemistry | 2012

The pleckstrin homology (PH) domain of the Arf exchange factor Brag2 is an allosteric binding site.

Xiaoying Jian; James M. Gruschus; Elizabeth Sztul; Paul A. Randazzo

Background: Brag2 is a PH domain-containing Arf guanine nucleotide exchange factor (GEF) that regulates cell adhesion. Results: PIP2 association with the PH domain stimulated Brag2 activity. Regulation was dependent on the N terminus of Arf and independent of the N-terminal myristate. Conclusion: PIP2 binding to the PH domain allosterically modifies Brag2 activity. Significance: A novel regulatory mechanism for GEFs was identified. Brag2, a Sec7 domain (sec7d)-containing guanine nucleotide exchange factor, regulates cell adhesion and tumor cell invasion. Brag2 catalyzes nucleotide exchange, converting Arf·GDP to Arf·GTP. Brag2 contains a pleckstrin homology (PH) domain, and its nucleotide exchange activity is stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2). Here we determined kinetic parameters for Brag2 and examined the basis for regulation by phosphoinositides. Using myristoylated Arf1·GDP as a substrate, the kcat was 1.8 ± 0.1/s as determined by single turnover kinetics, and the Km was 0.20 ± 0.07 μm as determined by substrate saturation kinetics. PIP2 decreased the Km and increased the kcat of the reaction. The effect of PIP2 required the PH domain of Brag2 and the N terminus of Arf and was largely independent of Arf myristoylation. Structural analysis indicated that the linker between the sec7d and the PH domain in Brag2 may directly contact Arf. In support, we found that a Brag2 fragment containing the sec7d and the linker was more active than sec7d alone. We conclude that Brag2 is allosterically regulated by PIP2 binding to the PH domain and that activity depends on the interdomain linker. Thus, the PH domain and the interdomain linker of Brag2 may be targets for selectively regulating the activity of Brag2.


Cellular logistics | 2012

Nucleotide exchange factors Kinetic analyses and the rationale for studying kinetics of GEFs

John K. Northup; Xiaoying Jian; Paul A. Randazzo

Exchange factors are enzymes that catalyze the exchange of GTP for GDP on guanine nucleotide binding proteins. Progress in understanding the molecular basis of action and the cellular functions of these enzymes has largely come from structural determinations (e.g., crystal structures) and studying effects on cells when expression levels of the exchange factors are perturbed or mutated exchange factors are expressed. Proportionally little effort has been expended on studying the kinetics of exchange; however, reaction rates are central to understanding enzymes. Here, we discuss the importance of kinetic analysis of exchange factors for guanine nucleotide binding proteins, with a focus on ADP-ribosylation factor (Arf) and heterotrimeric G proteins, for providing unique insights into molecular mechanisms and regulation as well as how kinetic analyses are used to complement other approaches.


Journal of Biological Chemistry | 2011

Novel C-terminal Motif within Sec7 Domain of Guanine Nucleotide Exchange Factors Regulates ADP-ribosylation Factor (ARF) Binding and Activation

Jason Lowery; Tomasz Szul; Jayaraman Seetharaman; Xiaoying Jian; Min Su; Farhad Forouhar; Rong Xiao; Thomas B. Acton; Gaetano T. Montelione; Helen Lin; John Wright; Eun Joo Lee; Zoe G. Holloway; Paul A. Randazzo; Liang Tong; Elizabeth Sztul

ADP-ribosylation factors (ARFs) and their activating guanine nucleotide exchange factors (GEFs) play key roles in membrane traffic and signaling. All ARF GEFs share a ∼200-residue Sec7 domain (Sec7d) that alone catalyzes the GDP to GTP exchange that activates ARF. We determined the crystal structure of human BIG2 Sec7d. A C-terminal loop immediately following helix J (loop>J) was predicted to form contacts with helix H and the switch I region of the cognate ARF, suggesting that loop>J may participate in the catalytic reaction. Indeed, we identified multiple alanine substitutions within loop>J of the full length and/or Sec7d of two large brefeldin A-sensitive GEFs (GBF1 and BIG2) and one small brefeldin A-resistant GEF (ARNO) that abrogated binding of ARF and a single alanine substitution that allowed ARF binding but inhibited GDP to GTP exchange. Loop>J sequences are highly conserved, suggesting that loop>J plays a crucial role in the catalytic activity of all ARF GEFs. Using GEF mutants unable to bind ARF, we showed that GEFs associate with membranes independently of ARF and catalyze ARF activation in vivo only when membrane-associated. Our structural, cell biological, and biochemical findings identify loop>J as a key regulatory motif essential for ARF binding and GDP to GTP exchange by GEFs and provide evidence for the requirement of membrane association during GEF activity.


Journal of Biological Chemistry | 2016

The Arf GTPase-activating Protein, ASAP1, Binds Nonmuscle Myosin 2A to Control Remodeling of the Actomyosin Network.

Pei Wen Chen; Xiaoying Jian; Sarah M. Heissler; Kang Le; Ruibai Luo; Lisa M. Miller Jenkins; Attila Nagy; Joel Moss; James R. Sellers; Paul A. Randazzo

ASAP1 regulates F-actin-based structures and functions, including focal adhesions (FAs) and circular dorsal ruffles (CDRs), cell spreading and migration. ASAP1 function requires its N-terminal BAR domain. We discovered that nonmuscle myosin 2A (NM2A) directly bound the BAR-PH tandem of ASAP1 in vitro. ASAP1 and NM2A co-immunoprecipitated and colocalized in cells. Knockdown of ASAP1 reduced colocalization of NM2A and F-actin in cells. Knockdown of ASAP1 or NM2A recapitulated each others effects on FAs, cell migration, cell spreading, and CDRs. The NM2A-interacting BAR domain contributed to ASAP1 control of cell spreading and CDRs. Exogenous expression of NM2A rescued the effect of ASAP1 knockdown on CDRs but ASAP1 did not rescue NM2A knockdown defect in CDRs. Our results support the hypothesis that ASAP1 is a positive regulator of NM2A. Given other binding partners of ASAP1, ASAP1 may directly link signaling and the mechanical machinery of cell migration.


Cellular logistics | 2013

Quantitative Analysis of Guanine Nucleotide Exchange Factors (GEFs) as Enzymes

Paul A. Randazzo; Xiaoying Jian; Pei-Wen Chen; Peng Zhai; Olivier Soubias; John K. Northup

The proteins that possess guanine nucleotide exchange factor (GEF) activity, which include about ~800 G protein coupled receptors (GPCRs),1 15 Arf GEFs,2 81 Rho GEFs,3 8 Ras GEFs,4 and others for other families of GTPases,5 catalyze the exchange of GTP for GDP on all regulatory guanine nucleotide binding proteins. Despite their importance as catalysts, relatively few exchange factors (we are aware of only eight for ras superfamily members) have been rigorously characterized kinetically.5–13 In some cases, kinetic analysis has been simplistic leading to erroneous conclusions about mechanism (as discussed in a recent review14). In this paper, we compare two approaches for determining the kinetic properties of exchange factors: (i) examining individual equilibria, and; (ii) analyzing the exchange factors as enzymes. Each approach, when thoughtfully used,14,15 provides important mechanistic information about the exchange factors. The analysis as enzymes is described in further detail. With the focus on the production of the biologically relevant guanine nucleotide binding protein complexed with GTP (G•GTP), we believe it is conceptually simpler to connect the kinetic properties to cellular effects. Further, the experiments are often more tractable than those used to analyze the equilibrium system and, therefore, more widely accessible to scientists interested in the function of exchange factors.

Collaboration


Dive into the Xiaoying Jian's collaboration.

Top Co-Authors

Avatar

Paul A. Randazzo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ruibai Luo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Zhai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Sztul

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

James M. Gruschus

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John K. Northup

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge