Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaoying Ye is active.

Publication


Featured researches published by Xiaoying Ye.


Cell Research | 2011

Association of telomere length with authentic pluripotency of ES/iPS cells

Junjiu Huang; Fang Wang; Maja Okuka; Na Liu; Guangzhen Ji; Xiaoying Ye; Bingfeng Zuo; Minshu Li; Ping Liang; William W Ge; John C.M. Tsibris; David L. Keefe; Lin Liu

Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.


Cell Research | 2013

Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation.

Jing Jiang; Wenjian Lv; Xiaoying Ye; Lingbo Wang; Man Zhang; Hui Yang; Maja Okuka; Chikai Zhou; Xuan Zhang; Lin Liu; Jinsong Li

Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy. However, genomic abnormalities exist in human iPS cells, and most mouse iPS cells are not fully pluripotent, as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors. In contrast, nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA. We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming, and improve the quality of the resultant iPS cells. To test this hypothesis, we screened for factors that could decrease DDR signals during iPS cell induction. We determined that Zscan4, in combination with the Yamanaka factors, not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation. The inclusion of Zscan4 stabilized the genomic DNA, resulting in p53 downregulation. Furthermore, Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism. As a result, iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells. Strikingly, more than 50% of iPS cell lines (11/19) produced via this “Zscan4 protocol” gave rise to live-borne all-iPS cell mice as determined by TCA, compared to 1/12 for lines produced using the classical Yamanaka factors. Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.


Human Reproduction | 2013

Resveratrol protects against age-associated infertility in mice

Mengyuan Liu; Yu Yin; Xiaoying Ye; Ming Zeng; Qiang Zhao; David L. Keefe; Lin Liu

STUDY QUESTION Does resveratrol counteract age-associated infertility in a mouse model of reproductive aging? SUMMARY ANSWER Long-term-oral administration of resveratrol protects against the reduction of fertility with reproductive aging in mice. WHAT IS KNOWN ALREADY Loss of oocytes and follicles and reduced oocyte quality contribute to age-associated ovarian aging and infertility. Accumulation of free radicals with age leads to DNA mutations, protein damage, telomere shortening, apoptosis and accelerated ovarian aging. Increasing evidence shows that resveratrol, enriched in certain foods, for example red grapes and wine, has anti-tumor and anti-aging effects on somatic tissues by influencing various signaling pathways, including anti-oxidation, as well as activating Sirt1 and telomerase. We investigated the potential of resveratrol to stave off ovarian aging in the inbred C57/BL6 mouse model. STUDY DESIGN, SIZE, DURATION Young C57/BL6 females (aged 2-3 months) were fed with resveratrol added to drinking water at 30 mg/l (providing ∼7.0 mg/kg/day) for 6 or 12 months, and the fertility and ovarian functions were compared among mice treated with or without resveratrol, and young mice served as reproductive controls. Experiments were repeated three times, with an average of 25 females randomly allocated to each treatment group for each repeat. PARTICIPANTS/MATERIALS, SETTING, METHODS Reproductive performance of female mice was determined by litter size, ovarian follicles and oocyte quantity and quality, and compared with age-matched controls. The impact of resveratrol on telomeres and telomerase activity, and expression of genes associated with cell senescence also was evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Young mice fed with resveratrol for 12 months retained the capacity to reproduce, while age-matched controls produced no pups. Consistently, mice fed with resveratrol for 12 months exhibited a larger follicle pool than controls (P < 0.05). Furthermore, telomerase activity, telomere length and age-related gene expression in ovaries of mice fed with resveratrol resembled those of young mice, but differed (P < 0.05) from those of age-matched old mice. Resveratrol improved (P < 0.05) the number and quality of oocytes, as evidenced by spindle morphology and chromosome alignment. Also, resveratrol affected embryo development in vitro in a dose-dependent manner. LIMITATIONS, REASONS FOR CAUTION The doses of resveratrol and the experimental conditions used by different research groups have varied considerably, and the dosage influences both the effectiveness and toxicity of resveratrol. Fine-tuning the dosage of resveratrol likely will optimize its anti-aging effects on ovarian function. WIDER IMPLICATIONS OF THE FINDINGS Our data provide a proof of principle of the fertility-sparing effect of resveratrol in female mice. Although depletion of the ovarian reserve of high-quality oocytes also contributes to increased infertility with reproductive aging in women, the data obtained using a mouse model may not extrapolate directly to human reproduction, and more extensive research is needed if any clinic trials are to be attempted. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by MOST of China National Basic Research Program (grant number: 2010CB94500 and 2012CB911200). The authors have no competing interests to declare.


Cell Research | 2012

Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells

Fang Wang; Yu Yin; Xiaoying Ye; Kai Liu; Haiying Zhu; Lingling Wang; Maria Chiourea; Maja Okuka; Guangzhen Ji; Jiameng Dan; Bingfeng Zuo; Minshu Li; Qian Zhang; Na Liu; Lingyi Chen; Xinghua Pan; Sarantis Gagos; David L. Keefe; Lin Liu

Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc−/− and Terc+/−) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.


Developmental Cell | 2014

Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin Silencing

Jiameng Dan; Yifei Liu; Na Liu; Maria Chiourea; Maja Okuka; Tao Wu; Xiaoying Ye; Chunlin Mou; Lei Wang; Lingling Wang; Yu Yin; Jihong Yuan; Bingfeng Zuo; Fang Wang; Zhiguo Li; Xinghua Pan; Zhinan Yin; Lingyi Chen; David L. Keefe; Sarantis Gagos; Andrew Xiao; Lin Liu

Telomere length homeostasis is essential for genomic stability and unlimited self-renewal of embryonic stem cells (ESCs). We show that telomere-associated protein Rif1 is required to maintain telomere length homeostasis by negatively regulating Zscan4 expression, a critical factor for telomere elongation by recombination. Depletion of Rif1 results in terminal hyperrecombination, telomere length heterogeneity, and chromosomal fusions. Reduction of Zscan4 by shRNA significantly rescues telomere recombination defects of Rif1-depleted ESCs and associated embryonic lethality. Further, Rif1 negatively modulates Zscan4 expression by maintaining H3K9me3 levels at subtelomeric regions. Mechanistically, Rif1 interacts and stabilizes H3K9 methylation complex. Thus, Rif1 regulates telomere length homeostasis of ESCs by mediating heterochromatic silencing.


Human Reproduction | 2012

Delay in oocyte aging in mice by the antioxidant N-acetyl-l-cysteine (NAC)

Jinmiao Liu; Mengyuan Liu; Xiaoying Ye; Kai Liu; Junjiu Huang; Lingling Wang; Guangzhen Ji; Na Liu; Xiangdong Tang; Jay M. Baltz; David L. Keefe; Lin Liu

BACKGROUND Ovarian aging is associated with declining numbers and quality of oocytes and follicles. Oxidative stress by reactive oxygen species (ROS) contributes to somatic aging in general, and also has been implicated in reproductive aging. Telomere shortening is also involved in aging, and telomeres are particularly susceptible to ROS-induced damage. Previously, we have shown that antioxidant N-acetyl-L-cysteine (NAC) effectively rescues oocytes and embryos from ROS-induced telomere shortening and apoptosis in vitro. Using mice as models, we tested the hypothesis that reducing oxidative stress by NAC might prevent or delay ovarian aging in vivo. METHODS Initially, young females were treated with NAC in drinking water for 2 months and the quality of fertilized oocytes and early embryo development were evaluated. Next, young mice 1-1½ months old were treated for 1 year with NAC added in drinking water, and their fertility was analyzed starting at 6 months, as indicated by litter size, oocyte number and quality. The ovaries were also examined for telomere activity and length and the expression of selected genes related to aging and DNA damage. RESULTS Short-term treatment of mice for 2 months with NAC demonstrated that NAC improved the quality of fertilized oocytes and early embryo development. Mice treated with a long-term low concentration (0.1 mM) of NAC had increased litter sizes at the ages of 7-10 months compared with age-matched controls without NAC treatment. NAC also increased the quality of the oocytes from these older mice. Moreover, the expression of sirtuins was increased, telomerase activity was higher and telomere length was longer in the ovaries of mice treated with NAC compared with those of the control group. CONCLUSIONS These data suggest that appropriate treatment with the antioxidant NAC postpones the process of oocyte aging in mice.


Stem Cells | 2008

Efficient Production of Mice from Embryonic Stem Cells Injected into Four‐ or Eight‐Cell Embryos by Piezo Micromanipulation

Junjiu Huang; Kai Deng; Haojia Wu; Zhong Liu; Zhisheng Chen; Shanbo Cao; Lingjun Zhou; Xiaoying Ye; David L. Keefe; Lin Liu

The conventional method for producing embryonic stem (ES) cell‐derived knockout or transgenic mice involves injection of ES cells into normal, diploid blastocysts followed by several rounds of breeding of resultant chimeras and thus is a time‐consuming and inefficient procedure. F0 ES cell pups can also be derived directly from tetraploid embryo complementation, which requires fusion of two‐cell embryos. Recently, F0 ES cell pups have been produced by injection of ES cells into eight‐cell embryos using a laser‐assisted micromanipulation system. We report a simple method for producing F0 ES cell germline‐competent mice by piezo injection of ES cells into four‐ or eight‐cell embryos. The efficiency of producing live, transgenic mice by this method is higher than that with the tetraploid blastocyst complementation method. This efficient and economical technique for directly producing F0 ES cell offspring can be applicable in many laboratories for creating genetically manipulated mice using ES cell technology and also for stringent testing of the developmental potency of new ES cell or other types of pluripotent stem cell lines.


Stem Cells | 2013

No evidence for neo-oogenesis may link to ovarian senescence in adult monkey

Jihong Yuan; Dongdong Zhang; Lei Wang; Mengyuan Liu; Jian Mao; Yu Yin; Xiaoying Ye; Na Liu; Jihong Han; Yingdai Gao; Tao Cheng; David L. Keefe; Lin Liu

Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo‐oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo‐oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo‐meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency‐associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo‐meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age. Stem Cells 2013;31:2538–2550


Proceedings of the National Academy of Sciences of the United States of America | 2013

Robust measurement of telomere length in single cells

Fang Wang; Xinghua Pan; Keri Kalmbach; M.L. Seth-Smith; Xiaoying Ye; Danielle M. F. Antumes; Yu Yin; Lin Liu; David L. Keefe; Sherman M. Weissman

Significance Telomeres are the structures at the ends of chromosomes that protect these ends from degradation or joining to one another. Telomeres consist of repeat DNA sequences and the length is gradually eroded as the cell ages. The ability to measure telomere length in individual cells would be important for studies of cell senescence, malignancy, stem cell renewal, and human fertility. We have developed a robust and practical method for estimating the telomere length of single cells, and used this method to demonstrate the heterogeneity or changes of telomere length in several systems. Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases.


Developmental Biology | 2013

Atypical PKC, regulated by Rho GTPases and Mek/Erk, phosphorylates Ezrin during eight-cell embryocompaction.

Hongjie Liu; Zhaoting Wu; Xianle Shi; Wenzhi Li; Chang Liu; Dekun Wang; Xiaoying Ye; Lin Liu; Jie Na; Hong Cheng; Lingyi Chen

Phosphorylation of Ezrin T567 plays an important role in eight-cell embryo compaction. Yet, it is not clear how Ezrin phosphorylation is regulated during embryo compaction. Here, we demonstrated that inhibition of Mek/Erk or protein kinase C (PKC) signaling reduced the phosphorylation level of Ezrin T567 in eight-cell compacted embryos. Interestingly, the Rho GTPase inhibitor C3-transferase caused basolateral enrichment of atypical PKC (aPKC), as well as basolateral shift of phosphorylated Ezrin, suggesting aPKC may be a key regulator of Ezrin phosphorylation. Moreover, inhibition of PKC, but not Mek/Erk or Rho GTPases, affected the maintenance of Ezrin phosphorylation in compacted embryos. We further identified that aPKC is indeed required for Ezrin phosphorylation in eight-cell embryos. Taken together, Rho GTPases facilitate the apical distribution of aPKC and Ezrin. Subsequently, aPKC and Mek/Erk work together to promote Ezrin phosphorylation at the apical region, which in turn mediates the apical enrichment of filamentous actin, stabilizing the polarized apical region and allowing embryo compaction. Our data also suggested that aPKC might be the Ezrin kinase during eight-cell embryo compaction.

Collaboration


Dive into the Xiaoying Ye's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge